TC270, TC275, TC277 Datasheet by Infineon Technologies

View All Related Products | Download PDF Datasheet
@w
Microcontrollers
Data Sheet
V 1.0, 2017-01
TC270 / TC275 / TC277
32-Bit Single-Chip Micocontroller
DC-Step
32-Bit Single-Chip Micocontroller
32-Bit
Microcontroller
Edition 2017-01
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2017 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com)
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
@neon
TC270 / TC275 / TC277 DC-Step
Data Sheet 3 V 1.0 2017-01
Revision History
Page or Item Subjects (major changes since previous revision)
V 1.0, 2017-01
The history is documented in the last chapter
@neon
TC270 / TC275 / TC277 DC-Step
Data Sheet 4 V 1.0 2017-01
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,
CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,
EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™,
ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™,
POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics
Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of
OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF
Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™
of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co.
TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™
of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes
Zetex Limited.
Last Trademarks Update 2011-11-11
@neon
TC270 / TC275 / TC277 DC-Step
Data Sheet TOC-1 V 1.0, 2017-01
1 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Package and Pinning Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 TC275x Pin Definition and Functions: LQFP176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 TC275x LQFP176 Package Variant Pin Configuration' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Emergency Stop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.1.3 Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.2 TC277x Pin Definition and Functions: BGA292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2.1 TC277xBGA292 Package Variant Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.2.2 Emergency Stop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
2.2.3 Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
2.3 TC270x Bare Die Pad Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
2.3.1 Pad Openings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
2.3.2 Emergency Stop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
2.3.3 Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
3 Electrical Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
3.1 Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
3.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
3.3 Pin Reliability in Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.4 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.5 5 V / 3.3 V switchable Pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
3.6 3.3 V only Pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
3.7 High performance LVDS Pads (LVDSH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
3.8 Medium performance LVDS Pads (LVDSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
3.9 VADC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
3.10 DSADC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
3.11 MHz Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
3.12 Back-up Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
3.13 Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
3.14 Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
3.14.1 Calculating the 1.3 V Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
3.15 Power-up and Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
3.15.1 External Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
3.15.2 Single Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
3.15.3 External Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
3.15.4 Single Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
3.16 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
3.17 EVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
3.18 Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
3.19 ERAY Phase Locked Loop (ERAY_PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
3.20 AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
3.21 JTAG Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
3.22 DAP Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
3.23 ASCLIN SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
3.24 ASCLIN SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
3.25 QSPI Timings, Master and Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
3.26 QSPI Timings, Master and Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
3.27 MSC Timing 5 V Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
3.28 MSC Timing 3.3 V Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Table of Contents
@neon
TC270 / TC275 / TC277 DC-Step
Data Sheet 2 V 1.0 2017-01
3.29 Ethernet Interface (ETH) Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
3.29.1 ETH Measurement Reference Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
3.29.2 ETH Management Signal Parameters (ETH_MDC, ETH_MDIO) . . . . . . . . . . . . . . . . . . . . . . . . . 256
3.29.3 ETH MII Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
3.29.4 ETH RMII Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
3.30 E-Ray Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
3.31 HSCT Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
3.32 Inter-IC (I2C) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
3.33 Flash Target Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
3.34 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
3.34.1 Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
3.34.2 TC270 Carrier Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
3.35 Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
4 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
4.1 Changes from TC27xDB_v10 to 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
@neon
TC270 / TC275 / TC277 DC-Step
Summary of Features
Data Sheet 3 V 1.0 2017-01
1 Summary of Features
The TC27x product family has the following features:
High Performance Microcontroller with three CPU cores
Two 32-bit super-scalar TriCore CPUs (TC1.6P), each having the following features:
Superior real-time performance
Strong bit handling
Fully integrated DSP capabilities
Multiply-accumulate unit able to sustain 2 MAC operations per cycle
Fully pipelined Floating point unit (FPU)
up to 200 MHz operation at full temperature range
up to 120 Kbyte Data Scratch-Pad RAM (DSPR)
up to 32 Kbyte Instruction Scratch-Pad RAM (PSPR)
16 Kbyte Instruction Cache (ICACHE)
8 Kbyte Data Cache (DCACHE)
Power Efficient scalar TriCore CPU (TC1.6E), having the following features:
Binary code compatibility with TC1.6P
up to 200 MHz operation at full temperature range
up to 112 Kbyte Data Scratch-Pad RAM (DSPR)
up to 24 Kbyte Instruction Scratch-Pad RAM (PSPR)
8 Kbyte Instruction Cache (ICACHE)
0.125Kbyte Data Read Buffer (DRB)
Lockstepped shadow cores for one TC1.6P and for TC1.6E
Multiple on-chip memories
All embedded NVM and SRAM are ECC protected
up to 4 Mbyte Program Flash Memory (PFLASH)
up to 384 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation
32 Kbyte Memory (LMU)
BootROM (BROM)
64-Channel DMA Controller with safe data transfer
Sophisticated interrupt system (ECC protected)
High performance on-chip bus structure
64-bit Cross Bar Interconnect (SRI) giving fast parallel access between bus masters, CPUs and memories
32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units
One bus bridge (SFI Bridge)
Optional Hardware Security Module (HSM) on some variants
Safety Management Unit (SMU) handling safety monitor alarms
Memory Test Unit with ECC, Memory Initialization and MBIST functions (MTU)
Hardware I/O Monitor (IOM) for checking of digital I/O
Versatile On-chip Peripheral Units
Four Asynchronous/Synchronous Serial Channels (ASCLIN) with hardware LIN support (V1.3, V2.0, V2.1
and J2602) up to 50 MBaud
@neon
TC270 / TC275 / TC277 DC-Step
Summary of Features
Data Sheet 4 V 1.0 2017-01
Four Queued SPI Interface Channels (QSPI) with master and slave capability up to 50 Mbit/s
High Speed Serial Link (HSSL) for serial inter-processor communication up to 320 Mbit/s
Two serial Micro Second Bus interfaces (MSC) for serial port expansion to external power devices
One MultiCAN+ Module with 4 CAN nodes and 256 free assignable message objects for high efficiency
data handling via FIFO buffering and gateway data transfer
10 Single Edge Nibble Transmission (SENT) channels for connection to sensors
One FlexRayTM module with 2 channels (E-Ray) supporting V2.1
One Generic Timer Module (GTM) providing a powerful set of digital signal filtering and timer functionality
to realize autonomous and complex Input/Output management
One Capture / Compare 6 module (Two kernels CCU60 and CCU61)
One General Purpose 12 Timer Unit (GPT120)
Three channel Peripheral Sensor Interface conforming to V1.3 (PSI5)
Peripheral Sensor Interface with Serial PHY (PSI5-S)
Optional Inter-Integrated Circuit Bus Interface (I2C) conforming to V2.1
Optional IEEE802.3 Ethernet MAC with RMII and MII interfaces (ETH)
Versatile Successive Approximation ADC (VADC)
Cluster of 8 independent ADC kernels
Input voltage range from 0 V to 5.5V (ADC supply)
Delta-Sigma ADC (DSADC)
Six channels
Digital programmable I/O ports
On-chip debug support for OCDS Level 1 (CPUs, DMA, On Chip Buses)
multi-core debugging, real time tracing, and calibration
four/five wire JTAG (IEEE 1149.1) or DAP (Device Access Port) interface
Power Management System and on-chip regulators
Clock Generation Unit with System PLL and Flexray PLL
Embedded Voltage Regulator
@neon
TC270 / TC275 / TC277 DC-Step
Summary of Features
Data Sheet 5 V 1.0 2017-01
Ordering Information
The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering
code identifies:
The derivative itself, i.e. its function set, the temperature range, and the supply voltage
The package and the type of delivery.
For the available ordering codes for the TC270 / TC275 / TC277 please refer to the
"AURIX™ TC2x Data Sheet Addendum", which summarizes all available variants.
Table 1-1 Overview of TC27x Functions
Feature
CPU Core Type TC1.6P / TC1.6E
P Cores / Checker Cores /
E Cores / Checker Cores
2 / 1 /
1 / 1
Max. Freq. 200 MHz
FPU yes
Program Flash Size 4Mbyte
Data Flash Size 384 Kbyte
Cache Instruction (P / E) 16 Kbyte / 8 Kbyte
Data (P / E) 8 Kbyte / -
SRAM Size TC1.6P
(DSPR/PSPR)
120 Kbyte / 32 Kbyte 2)
Size TC1.6E (DSPR/PSPR) 112 Kbyte / 24 Kbyte 1) 2)
Size LMU 32 Kbyte
DMA Channels 64
ADC Channels 48 + 12
Converter 8
DSADC Channels 6
GTM TIM 4
TOM 3
ATOM / MCS 5 / 4
CMU / ICM 1 / 1
PSM 1
TBU 1
SPE 2
CMP / MON 1 / 1
BRC / DPLL 1 / 1
Timer GPT12 2
CCU6 2
STM Modules 3
FlexRay Modules 1
Channels 2
@neon
TC270 / TC275 / TC277 DC-Step
Summary of Features
Data Sheet 6 V 1.0 2017-01
CAN Nodes 4
Message Objects 256
QSPI Channels 4
ASCLIN Interfaces 4
I2C Interfaces 1
SENT Channels 10
PSI5 Modules 3
PSI5-S Modules 1
HSSL Channels 1
MSC Channels 2
Ethernet Channels 1
ASIL Level up to ASIL-D
FCE Modules 1
Safety support SMU 1
IOM 1
Security HSM 1
Embedded Voltage Regulator DCDC from 5 V / 3.3 V to 1.3 V Yes
Embedded Voltage Regulator LDO from 5 V / 3.3 V to 1.3 V Yes
Embedded Voltage Regulator LDO from 5 V to 3.3 V Yes
Low Power Feature Standby RAM Yes
Packages Type LF-BGA-292-6 / PG-LQFP-176-22
I/O Type 5 V CMOS / 3.3 V CMOS / LVDS
Tambient Range 40 … +125°C
1) Address range starts at lowest address defined in the User’s Manual. For reference see the Memory Maps chapter of the
User’s Manual.
2) To ensure the processor cores are provided with a constant stream of instructions the Instruction Fetch Units will
speculatively fetch instructions from the up to 64 bytes ahead of the current PC.
If the current PC is within 64 bytes of the top of an instruction memory the Instruction Fetch Unit may attempt to
speculatively fetch instruction from beyond the physical range. This may then lead to error conditions and alarms being
triggered by the bus and memory systems.
It is therefore recommended that the upper 64 bytes of any memory be unused for instruction storage.
Table 1-1 Overview of TC27x Functions (cont’d)
Feature
u/. @Ineon
TC270 / TC275 / TC277 DC-Step
Package and Pinning Definitions
Data Sheet 7 V 1.0 2017-01
2 Package and Pinning Definitions
This chapter gives a pinning of the different packages of the TC270 / TC275 / TC277.
/ @fineon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 8 V 1.0 2017-01
2.1 TC275x Pin Definition and Functions: LQFP176
Figure 2-1 is showing the TC275x Logic Symbol for the package variant: QFP176.
Figure 2-1 TC275x Logic Symbol for the package variant LQFP176.
TC27x
P02.0
P02.1
P02.2
P02.3
P02.4
P02.5
P02.6
P02.7
P02.8
V
DD
/V
DDSB
P00.0
P00.1
P00.2
P00.3
P00.4
P00.5
P00.6
P00.7
P00.8
P00.9
P00.10
P00.11
P00.12
V
DD
V
EXT
V
AREF2
V
AGND 2
AN47
AN46
AN45
AN44
AN39
AN38
AN37
AN36
AN35
AN33
AN32
AN29
AN28
AN27
AN26
AN25
AN24
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
17 6
17 5
17 4
17 3
17 2
17 1
17 0
16 9
16 8
16 7
16 6
16 5
16 4
16 3
16 2
16 1
16 0
15 9
15 8
15 7
15 6
15 5
15 4
15 3
15 2
15 1
15 0
14 9
14 8
14 7
14 6
14 5
14 4
14 3
14 2
14 1
14 0
13 9
13 8
13 7
13 6
13 5
13 4
13 3
AN 21
AN 20
AN 19
AN 18
AN 17
AN 16
V
AG ND1
V
AREF1
V
SSM
V
DDM
AN 13
AN 12
AN 11
AN 10
AN8
AN7
AN6
AN5
AN4
AN3
AN2
AN1
AN0
V
DD
V
EXT
P33.0
P33.1
P33.2
P33.3
P33.4
P33.5
P33.6
P33.7
P33.8
P33.9
P3 3. 10
P3 3. 11
P3 3. 12
P3 3. 13
V
GAT E 1 N
/ P 32.0
V
GAT E 1 P
P32.2
P32.3
P32.4
P20. 14
P20. 13
P20. 12
P20. 11
P20. 10
P20. 9
P20. 8
P20. 7
P20. 6
V
DD
ESR 0
PORST
ESR 1
P20. 3
P20. 2 / TESTMODE
P20. 1
P20. 0
TCK
TRST
P21. 7 / TDO
TMS
P21. 6 / TDI
P21. 5
P21. 4
P21. 3
P21. 2
P21. 1
P21. 0
V
DDP 3
XTAL 2
XTAL 1
V
SS
V
DD
V
EXT
P22. 3
P22. 2
P22. 1
P22. 0
P23. 5
P23. 4
P23. 3
P23. 2
P23. 1
P23. 0
P1 0 .8
P1 0 .7
P1 0 .6
P1 0 .5
P1 0 .4
P1 0 .3
P1 0 .2
P1 0 .1
P1 0 .0
P1 1 .1 2
P1 1 .1 1
P1 1 .1 0
V
FLEX
P1 1 .9
P1 1 .6
P1 1 .3
P1 1 .2
P1 3 .3
P1 3 .2
P1 3 .1
P1 3 .0
V
DDFL3
V
DDP3
V
EXT
P1 4 .1 0
P1 4 .9
P1 4 .8
P1 4 .7
P1 4 .6
P1 4 .5
P1 4 .4
P1 4 .3
P1 4 .2
P1 4 .1
P1 4 .0
P1 5 .8
P1 5 .7
P1 5 .6
P1 5 .5
P1 5 .4
P1 5 .3
P1 5 .2
P1 5 .1
P1 5 .0
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 9 V 1.0 2017-01
2.1.1 TC275x LQFP176 Package Variant Pin Configuration'
Table 2-1 Port 00 Functions
Pin Symbol Ctrl Type Function
11 P00.0 I MP /
PU1 /
VEXT
General-purpose input
TIN9 GTM input
CTRAPA CCU61 input
T12HRE CCU60 input
INJ00 MSC0 input
CIFD9 CIF input
P00.0 O0 General-purpose output
TOUT9 O1 GTM output
ASCLK3 O2 ASCLIN3 output
ATX3 O3 ASCLIN3 output
O4 Reserved
TXDCAN1 O5 CAN node 1 output
O6 Reserved
COUT63 O7 CCU60 output
ETHMDIOA HWOU
T
ETH input/output
12 P00.1 I LP /
PU1 /
VEXT
General-purpose input
TIN10 GTM input
ARX3E ASCLIN3 input
RXDCAN1D CAN node 1 input
PSIRX0A PSI5 input
SENT0B SENT input
CC60INB CCU60 input
CC60INA CCU61 input
DSCIN5A DSADC channel 5 input A
DS5NA DSADC negative analog input of channel 5, pin A
VADCG7.5 VADC analog input channel 5 of group 7
CIFD10 CIF input
P00.1 O0 General-purpose output
TOUT10 O1 GTM output
ATX3 O2 ASCLIN3 output
O3 Reserved
DSCOUT5 O4 DSADC channel 5 output
O5 Reserved
SPC0 O6 SENT output
CC60 O7 CCU61 output
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 10 V 1.0 2017-01
13 P00.2 I LP /
PU1 /
VEXT
General-purpose input
TIN11 GTM input
SENT1B SENT input
DSDIN5A DSADC channel 5 input A
DS5PA DSADC positive analog input of channel 5, pin A
VADCG7.4 VADC analog input channel 4 of group 7
CIFD11 CIF input
P00.2 O0 General-purpose output
TOUT11 O1 GTM output
ASCLK3 O2 ASCLIN3 output
O3 Reserved
PSITX0 O4 PSI5 output
TXDCAN3 O5 CAN node 3 output
O6 Reserved
COUT60 O7 CCU61 output
14 P00.3 I LP /
PU1 /
VEXT
General-purpose input
TIN12 GTM input
RXDCAN3A CAN node 3 input
PSIRX1A PSI5 input
PSISRXA PSI5-S input
SENT2B SENT input
CC61INB CCU60 input
CC61INA CCU61 input
DSCIN3A DSADC channel 3 input A
VADCG7.3 VADC analog input channel 3 of group 7
DSITR5F DSADC channel 5 input F
CIFD12 CIF input
P00.3 O0 General-purpose output
TOUT12 O1 GTM output
ASLSO3 O2 ASCLIN3 output
O3 Reserved
DSCOUT3 O4 DSADC channel 3 output
O5 Reserved
SPC2 O6 SENT output
CC61 O7 CCU61 output
Table 2-1 Port 00 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 11 V 1.0 2017-01
15 P00.4 I LP /
PU1 /
VEXT
General-purpose input
TIN13 GTM input
REQ7 SCU input
SENT3B SENT input
DSDIN3A DSADC channel 3 input A
DSSGNA DSADC input
VADCG7.2 VADC analog input channel 2 of group 7 (MD)
CIFD13 CIF input
P00.4 O0 General-purpose output
TOUT13 O1 GTM output
PSISTX O2 PSI5-S output
O3 Reserved
PSITX1 O4 PSI5 output
VADCG4BFL0 O5 VADC output
SPC3 O6 SENT output
COUT61 O7 CCU61 output
16 P00.5 I LP /
PU1 /
VEXT
General-purpose input
TIN14 GTM input
PSIRX2A PSI5 input
SENT4B SENT input
CC62INB CCU60 input
CC62INA CCU61 input
DSCIN2A DSADC channel 2 input A
VADCG7.1 VADC analog input channel 1 of group 7 (MD)
CIFD14 CIF input
P00.5 O0 General-purpose output
TOUT14 O1 GTM output
DSCGPWMN O2 DSADC output
O3 Reserved
DSCOUT2 O4 DSADC channel 2 output
VADCG4BFL1 O5 VADC output
SPC4 O6 SENT output
CC62 O7 CCU61 output
Table 2-1 Port 00 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 12 V 1.0 2017-01
17 P00.6 I LP /
PU1 /
VEXT
General-purpose input
TIN15 GTM input
SENT5B SENT input
DSDIN2A DSADC channel 2 input A
VADCG7.0 VADC analog input channel 0 of group 7
DSITR4F DSADC channel 4 input F
CIFD15 CIF input
P00.6 O0 General-purpose output
TOUT15 O1 GTM output
DSCGPWMP O2 DSADC output
VADCG4BFL2 O3 VADC output
PSITX2 O4 PSI5 output
VADCEMUX10 O5 VADC output
SPC5 O6 SENT output
COUT62 O7 CCU61 output
18 P00.7 I LP /
PU1 /
VEXT
General-purpose input
TIN16 GTM input
SENT6B SENT input
CC60INC CCU61 input
CCPOS0A CCU61 input
T12HRB CCU60 input
T2INA GPT120 input
DSCIN4A DSADC channel 4 input A
DS4NA DSADC negative analog input of channel 4, pin A
VADCG6.5 VADC analog input channel 5 of group 6
CIFCLK CIF input
P00.7 O0 General-purpose output
TOUT16 O1 GTM output
O2 Reserved
VADCG4BFL3 O3 VADC output
DSCOUT4 O4 DSADC channel 4 output
VADCEMUX11 O5 VADC output
SPC6 O6 SENT output
CC60 O7 CCU61 output
Table 2-1 Port 00 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 13 V 1.0 2017-01
19 P00.8 I LP /
PU1 /
VEXT
General-purpose input
TIN17 GTM input
SENT7B SENT input
CC61INC CCU61 input
CCPOS1A CCU61 input
T13HRB CCU60 input
T2EUDA GPT120 input
DSDIN4A DSADC channel 4 input A
DS4PA DSADC channel 4 input A
VADCG6.4 VADC analog input channel 4 of group 6
CIFVSNC CIF input
P00.8 O0 General-purpose output
TOUT17 O1 GTM output
SLSO36 O2 QSPI3 output
O3 Reserved
O4 Reserved
VADCEMUX12 O5 VADC output
SPC7 O6 SENT output
CC61 O7 CCU61 output
Table 2-1 Port 00 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 14 V 1.0 2017-01
20 P00.9 I LP /
PU1 /
VEXT
General-purpose input
TIN18 GTM input
SENT8B SENT input
CC62INC CCU61 input
CCPOS2A CCU61 input
T13HRC CCU60 input
T12HRC CCU60 input
T4EUDA GPT120 input
DSCIN1A DSADC channel 1 input A
VADCG6.3 VADC analog input channel 3 of group 6
DSITR3F DSADC channel 3 input F
CIFHSNC CIF input
P00.9 O0 General-purpose output
TOUT18 O1 GTM output
SLSO37 O2 QSPI3 output
ARTS3 O3 ASCLIN3 output
DSCOUT1 O4 DSADC channel 1 output
O5 Reserved
SPC8 O6 SENT output
CC62 O7 CCU61 output
21 P00.10 I LP /
PU1 /
VEXT
General-purpose input
TIN19 GTM input
SENT9B SENT input
DSDIN1A DSADC channel 1 input A
VADCG6.2 VADC analog input channel 2 of group 6 (MD)
P00.10 O0 General-purpose output
TOUT19 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
SPC9 O6 SENT output
COUT63 O7 CCU61 output
Table 2-1 Port 00 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 15 V 1.0 2017-01
22 P00.11 I LP /
PU1 /
VEXT
General-purpose input
TIN20 GTM input
CTRAPA CCU60 input
T12HRE CCU61 input
DSCIN0A DSADC channel 0 input A
VADCG6.1 VADC analog input channel 1 of group 6 (MD)
P00.11 O0 General-purpose output
TOUT20 O1 GTM output
O2 Reserved
O3 Reserved
DSCOUT0 O4 DSADC channel 0 output
O5 Reserved
O6 Reserved
O7 Reserved
23 P00.12 I LP /
PU1 /
VEXT
General-purpose input
TIN21 GTM input
ACTS3A ASCLIN3 input
DSDIN0A DSADC channel 0 input A
VADCG6.0 VADC analog input channel 0 of group 6
P00.12 O0 General-purpose output
TOUT21 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
COUT63 O7 CCU61 output
Table 2-1 Port 00 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 16 V 1.0 2017-01
Table 2-2 Port 02 Functions
Pin Symbol Ctrl Type Function
1P02.0 I MP+ /
PU1 /
VEXT
General-purpose input
TIN0 GTM input
ARX2G ASCLIN2 input
REQ6 SCU input
CC60INA CCU60 input
CC60INB CCU61 input
CIFD0 CIF input
P02.0 O0 General-purpose output
TOUT0 O1 GTM output
ATX2 O2 ASCLIN2 output
SLSO31 O3 QSPI3 output
DSCGPWMN O4 DSADC output
TXDCAN0 O5 CAN node 0 output
TXDA O6 ERAY output
CC60 O7 CCU60 output
2P02.1 I LP / PU1
/ VEXT
General-purpose input
TIN1 GTM input
REQ14 SCU input
ARX2B ASCLIN2 input
RXDCAN0A CAN node 0 input
RXDA2 ERAY input
CIFD1 CIF input
P02.1 O0 General-purpose output
TOUT1 O1 GTM output
O2 Reserved
SLSO32 O3 QSPI3 output
DSCGPWMP O4 DSADC output
O5 Reserved
O6 Reserved
COUT60 O7 CCU60 output
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 17 V 1.0 2017-01
3P02.2 I MP+ /
PU1 /
VEXT
General-purpose input
TIN2 GTM input
CC61INA CCU60 input
CC61INB CCU61 input
CIFD2 CIF input
P02.2 O0 General-purpose output
TOUT2 O1 GTM output
ATX1 O2 ASCLIN1 output
SLSO33 O3 QSPI3 output
PSITX0 O4 PSI5 output
TXDCAN2 O5 CAN node 2 output
TXDB O6 ERAY output
CC61 O7 CCU60 output
4P02.3 I LP /
PU1 /
VEXT
General-purpose input
TIN3 GTM input
ARX1G ASCLIN1 input
RXDCAN2B CAN node 2 input
RXDB2 ERAY input
PSIRX0B PSI5 input
DSCIN5B DSADC channel 5 input B
SDI11 MSC1 input
CIFD3 CIF input
P02.3 O0 General-purpose output
TOUT3 O1 GTM output
ASLSO2 O2 ASCLIN2 output
SLSO34 O3 QSPI3 output
DSCOUT5 O4 DSADC channel 5 output
O5 Reserved
O6 Reserved
COUT61 O7 CCU60 output
Table 2-2 Port 02 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 18 V 1.0 2017-01
5P02.4 I MP+ /
PU1 /
VEXT
General-purpose input
TIN4 GTM input
SLSI3A QSPI3 input
ECTT1 TTCAN input
RXDCAN0D CAN node 0 input
CC62INA CCU60 input
CC62INB CCU61 input
DSDIN5B DSADC channel 5 input B
SDA0A I2C0 input
CIFD4 CIF input
P02.4 O0 General-purpose output
TOUT4 O1 GTM output
ASCLK2 O2 ASCLIN2 output
SLSO30 O3 QSPI3 output
PSISCLK O4 PSI5-S output
SDA0 O5 I2C0 output
TXENA O6 ERAY output
CC62 O7 CCU60 output
6P02.5 I MP+ /
PU1 /
VEXT
General-purpose input
TIN5 GTM input
MRST3A QSPI3 input
ECTT2 TTCAN input
PSIRX1B PSI5 input
PSISRXB PSI5-S input
SENT3C SENT input
DSCIN4B DSADC channel 4 input B
SCL0A I2C0 input
CIFD5 CIF input
P02.5 O0 General-purpose output
TOUT5 O1 GTM output
TXDCAN0 O2 CAN node 0 output
MRST3 O3 QSPI3 output
DSCOUT4 O4 DSADC channel 4 output
SCL0 O5 I2C0 output
TXENB O6 ERAY output
COUT62 O7 CCU60 output
Table 2-2 Port 02 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 19 V 1.0 2017-01
7P02.6 I MP /
PU1 /
VEXT
General-purpose input
TIN6 GTM input
MTSR3A QSPI3 input
SENT2C SENT input
CC60INC CCU60 input
CCPOS0A CCU60 input
T12HRB CCU61 input
T3INA GPT120 input
CIFD6 CIF input
DSDIN4B DSADC channel 4 input B
DSITR5E DSADC channel 5 input E
P02.6 O0 General-purpose output
TOUT6 O1 GTM output
PSISTX O2 PSI5-S output
MTSR3 O3 QSPI3 output
PSITX1 O4 PSI5 output
VADCEMUX00 O5 VADC output
O6 Reserved
CC60 O7 CCU60 output
Table 2-2 Port 02 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 20 V 1.0 2017-01
8P02.7 I MP /
PU1 /
VEXT
General-purpose input
TIN7 GTM input
SCLK3A QSPI3 input
PSIRX2B PSI5 input
SENT1C SENT input
CC61INC CCU60 input
CCPOS1A CCU60 input
T13HRB CCU61 input
T3EUDA GPT120 input
CIFD7 CIF input
DSCIN3B DSADC channel 3 input B
DSITR4E DSADC channel 4 input E
P02.7 O0 General-purpose output
TOUT7 O1 GTM output
O2 Reserved
SCLK3 O3 QSPI3 output
DSCOUT3 O4 DSADC channel 3 output
VADCEMUX01 O5 VADC output
SPC1 O6 SENT output
CC61 O7 CCU60 output
Table 2-2 Port 02 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 21 V 1.0 2017-01
9P02.8 I LP / PU1
/
VEXT
General-purpose input
TIN8 GTM input
SENT0C SENT input
CC62INC CCU60 input
CCPOS2A CCU60 input
T12HRC CCU61 input
T13HRC CCU61 input
T4INA GPT120 input
CIFD8 CIF input
DSDIN3B DSADC channel 3 input B
DSITR3E DSADC channel 3 input E
P02.8 O0 General-purpose output
TOUT8 O1 GTM output
SLSO35 O2 QSPI3 output
O3 Reserved
PSITX2 O4 PSI5 output
VADCEMUX02 O5 VADC output
ETHMDC O6 ETH output
CC62 O7 CCU60 output
Table 2-3 Port 10 Functions
Pin Symbol Ctrl Type Function
168 P10.0 I LP /
PU1 /
VEXT
General-purpose input
TIN102 GTM input
T6EUDB GPT120 input
P10.0 O0 General-purpose output
TOUT102 O1 GTM output
O2 Reserved
SLSO110 O3 QSPI1 output
O4 Reserved
VADCG6BFL0 O5 VADC output
O6 Reserved
O7 Reserved
Table 2-2 Port 02 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 22 V 1.0 2017-01
169 P10.1 I MP+ /
PU1 /
VEXT
General-purpose input
TIN103 GTM input
MRST1A QSPI1 input
T5EUDB GPT120 input
P10.1 O0 General-purpose output
TOUT103 O1 GTM output
MTSR1 O2 QSPI1 output
MRST1 O3 QSPI1 output
EN01 O4 MSC0 output
VADCG6BFL1 O5 VADC output
END03 O6 MSC0 output
O7 Reserved
170 P10.2 I MP /
PU1 /
VEXT
General-purpose input
TIN104 GTM input
SCLK1A QSPI1 input
T6INB GPT120 input
REQ2 SCU input
RXDCAN2E CAN node 2 input
SDI01 MSC0 input
P10.2 O0 General-purpose output
TOUT104 O1 GTM output
O2 Reserved
SCLK1 O3 QSPI1 output
EN00 O4 MSC0 output
VADCG6BFL2 O5 VADC output
END02 O6 MSC0 output
O7 Reserved
Table 2-3 Port 10 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 23 V 1.0 2017-01
171 P10.3 I MP /
PU1 /
VEXT
General-purpose input
TIN105 GTM input
MTSR1A QSPI1 input
REQ3 SCU input
T5INB GPT120 input
P10.3 O0 General-purpose output
TOUT105 O1 GTM output
VADCG6BFL3 O2 VADC output
MTSR1 O3 QSPI1 output
EN00 O4 MSC0 output
END02 O5 MSC0 output
TXDCAN2 O6 CAN node 2 output
O7 Reserved
172 P10.4 I MP+ /
PU1 /
VEXT
General-purpose input
TIN106 GTM input
MTSR1C QSPI1 input
CCPOS0C CCU60 input
T3INB GPT120 input
P10.4 O0 General-purpose output
TOUT106 O1 GTM output
O2 Reserved
SLSO18 O3 QSPI1 output
MTSR1 O4 QSPI1 output
EN00 O5 MSC0 output
END02 O6 MSC0 output
O7 Reserved
173 P10.5 I LP /
PU1 /
VEXT
General-purpose input
TIN107 GTM input
HWCFG4 SCU input
INJ01 MSC0 input
P10.5 O0 General-purpose output
TOUT107 O1 GTM output
ATX2 O2 ASCLIN2 output
SLSO38 O3 QSPI3 output
SLSO19 O4 QSPI1 output
T6OUT O5 GPT120 output
ASLSO2 O6 ASCLIN2 output
- O7 Reserved
Table 2-3 Port 10 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 24 V 1.0 2017-01
174 P10.6 I LP /
PU1 /
VEXT
General-purpose input
TIN108 GTM input
ARX2D ASCLIN2 input
MTSR3B QSPI3 input
HWCFG5 SCU input
P10.6 O0 General-purpose output
TOUT108 O1 GTM output
ASCLK2 O2 ASCLIN2 output
MTSR3 O3 QSPI3 output
T3OUT O4 GPT120 output
- O5 Reserved
MRST1 O6 QSPI1 output
VADCG7BFL0 O7 VADC output
175 P10.7 I LP /
PU1 /
VEXT
General-purpose input
TIN109 GTM input
ACTS2A ASCLIN2 input
MRST3B QSPI3 input
REQ4 SCU input
CCPOS1C CCU60 input
T3EUDB GPT120 input
P10.7 O0 General-purpose output
TOUT109 O1 GTM output
O2 Reserved
MRST3 O3 QSPI3 output
VADCG7BFL1 O4 VADC output
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-3 Port 10 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 25 V 1.0 2017-01
176 P10.8 I LP /
PU1 /
VEXT
General-purpose input
TIN110 GTM input
SCLK3B QSPI3 input
REQ5 SCU input
CCPOS2C CCU60 input
T4INB GPT120 input
P10.8 O0 General-purpose output
TOUT110 O1 GTM output
ARTS2 O2 ASCLIN2 output
SCLK3 O3 QSPI3 output
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-4 Port 11 Functions
Pin Symbol Ctrl Type Function
160 P11.2 I MPR /
PU1 /
VFLEX
General-purpose input
TIN95 GTM input
P11.2 O0 General-purpose output
TOUT95 O1 GTM output
END03 O2 MSC0 output
SLSO05 O3 QSPI0 output
SLSO15 O4 QSPI1 output
EN01 O5 MSC0 output
ETHTXD1 O6 ETH output
COUT63 O7 CCU60 output
Table 2-3 Port 10 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 26 V 1.0 2017-01
161 P11.3 I MPR /
PU1 /
VFLEX
General-purpose input
TIN96 GTM input
MRST1B QSPI1 input
SDI03 MSC0 input
P11.3 O0 General-purpose output
TOUT96 O1 GTM output
O2 Reserved
MRST1 O3 QSPI1 output
TXDA O4 ERAY output
O5 Reserved
ETHTXD0 O6 ETH output
COUT62 O7 CCU60 output
162 P11.6 I MPR /
PU1 /
VFLEX
General-purpose input
TIN97 GTM input
SCLK1B QSPI1 input
P11.6 O0 General-purpose output
TOUT97 O1 GTM output
TXENB O2 ERAY output
SCLK1 O3 QSPI1 output
TXENA O4 ERAY output
FCLP0 O5 MSC0 output
ETHTXEN O6 ETH output
COUT61 O7 CCU60 output
163 P11.9 I MP+ /
PU1 /
VFLEX
General-purpose input
TIN98 GTM input
MTSR1B QSPI1 input
RXDA1 ERAY input
ETHRXD1 ETH input
P11.9 O0 General-purpose output
TOUT98 O1 GTM output
O2 Reserved
MTSR1 O3 QSPI1 output
O4 Reserved
SOP0 O5 MSC0 output
O6 Reserved
COUT60 O7 CCU60 output
Table 2-4 Port 11 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 27 V 1.0 2017-01
165 P11.10 I LP /
PU1 /
VFLEX
General-purpose input
TIN99 GTM input
REQ12 SCU input
ARX1E ASCLIN1 input
SLSI1A QSPI1 input
RXDCAN3D CAN node 3 input
RXDB1 ERAY input
ETHRXD0 ETH input
SDI00 MSC0 input
P11.10 O0 General-purpose output
TOUT99 O1 GTM output
O2 Reserved
SLSO03 O3 QSPI0 output
SLSO13 O4 QSPI1 output
O5 Reserved
O6 Reserved
CC62 O7 CCU60 output
166 P11.11 I MP+ /
PU1 /
VFLEX
General-purpose input
TIN100 GTM input
ETHCRSDVA ETH input
ETHRXDVA ETH input
ETHCRSB ETH input
P11.11 O0 General-purpose output
TOUT100 O1 GTM output
END02 O2 MSC0 output
SLSO04 O3 QSPI0 output
SLSO14 O4 QSPI1 output
EN00 O5 MSC0 output
TXENB O6 ERAY output
CC61 O7 CCU60 output
Table 2-4 Port 11 Functions (cont’d)
Pin Symbol Ctrl Type Function
@fineon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 28 V 1.0 2017-01
167 P11.12 I MPR /
PU1 /
VFLEX
General-purpose input
TIN101 GTM input
ETHREFCLK ETH input
ETHTXCLKB ETH input
(Not for productive purposes)
ETHRXCLKA ETH input
(Not for productive purposes)
P11.12 O0 General-purpose output
TOUT101 O1 GTM output
ATX1 O2 ASCLIN1 output
GTMCLK2 O3 GTM output
TXDB O4 ERAY output
TXDCAN3 O5 CAN node 3 output
EXTCLK1 O6 SCU output
CC60 O7 CCU60 output
Table 2-5 Port 13 Functions
Pin Symbol Ctrl Type Function
156 P13.0 I LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN91 GTM input
P13.0 O0 General-purpose output
TOUT91 O1 GTM output
END03 O2 MSC0 output
SCLK2N O3 QSPI2 output (LVDS)
EN01 O4 MSC0 output
FCLN0 O5 MSC0 output (LVDS)
FCLND0 O6 MSC0 output (LVDS)
O7 Reserved
157 P13.1 I LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN92 GTM input
SCL0B I2C0 input
P13.1 O0 General-purpose output
TOUT92 O1 GTM output
O2 Reserved
SCLK2P O3 QSPI2 output (LVDS)
O4 Reserved
FCLP0 O5 MSC0 output (LVDS)
SCL0 O6 I2C0 output
O7 Reserved
Table 2-4 Port 11 Functions (cont’d)
Pin Symbol Ctrl Type Function
@fineon TTTTTTTTT
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 29 V 1.0 2017-01
158 P13.2 I LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN93 GTM input
CAPINA GPT120 input
SDA0B I2C0 input
P13.2 O0 General-purpose output
TOUT93 O1 GTM output
O2 Reserved
MTSR2N O3 QSPI2 output (LVDS)
FCLP0 O4 MSC0 output
SON0 O5 MSC0 output (LVDS)
SDA0 O6 I2C0 output
SOND0 O7 MSC0 output (LVDS)
159 P13.3 I LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN94 GTM input
P13.3 O0 General-purpose output
TOUT94 O1 GTM output
O2 Reserved
MTSR2P O3 QSPI2 output (LVDS)
O4 Reserved
SOP0 O5 MSC0 output (LVDS)
O6 Reserved
O7 Reserved
Table 2-6 Port 14 Functions
Pin Symbol Ctrl Type Function
142 P14.0 I MP+ /
PU1 /
VEXT
General-purpose input
TIN80 GTM input
P14.0 O0 General-purpose output
TOUT80 O1 GTM output
ATX0 O2 ASCLIN0 output
Recommended as Boot loader pin.
TXDA O3 ERAY output
TXDB O4 ERAY output
TXDCAN1 O5 CAN node 1 output
Used for single pin DAP (SPD) function.
ASCLK0 O6 ASCLIN0 output
COUT62 O7 CCU60 output
Table 2-5 Port 13 Functions (cont’d)
Pin Symbol Ctrl Type Function
@fineon T R A R R R E T H E
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 30 V 1.0 2017-01
143 P14.1 I MP /
PU1 /
VEXT
General-purpose input
TIN81 GTM input
REQ15 SCU input
ARX0A ASCLIN0 input
Recommended as Boot loader pin.
RXDCAN1B CAN node 1 input
Used for single pin DAP (SPD) function.
RXDA3 ERAY input
RXDB3 ERAY input
EVRWUPA SCU input
P14.1 O0 General-purpose output
TOUT81 O1 GTM output
ATX0 O2 ASCLIN0 output
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
COUT63 O7 CCU60 output
144 P14.2 I LP /
PU1 /
VEXT
General-purpose input
TIN82 GTM input
HWCFG2
EVR13
SCU input
Latched at cold power on reset to decide EVR13
activation.
P14.2 O0 General-purpose output
TOUT82 O1 GTM output
ATX2 O2 ASCLIN2 output
SLSO21 O3 QSPI2 output
O4 Reserved
O5 Reserved
ASCLK2 O6 ASCLIN2 output
O7 Reserved
Table 2-6 Port 14 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 31 V 1.0 2017-01
145 P14.3 I LP /
PU1 /
VEXT
General-purpose input
TIN83 GTM input
ARX2A ASCLIN2 input
REQ10 SCU input
HWCFG3_BMI SCU input
SDI02 MSC0 input
P14.3 O0 General-purpose output
TOUT83 O1 GTM output
ATX2 O2 ASCLIN2 output
SLSO23 O3 QSPI2 output
ASLSO1 O4 ASCLIN1 output
ASLSO3 O5 ASCLIN3 output
O6 Reserved
O7 Reserved
146 P14.4 I LP /
PU1 /
VEXT
General-purpose input
TIN84 GTM input
HWCFG6 SCU input
Latched at cold power on reset to decide default pad
reset state (PU or HighZ).
P14.4 O0 General-purpose output
TOUT84 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-6 Port 14 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 32 V 1.0 2017-01
147 P14.5 I MP+ /
PU1 /
VEXT
General-purpose input
TIN85 GTM input
HWCFG1
EVR33
SCU input
Latched at cold power on reset to decide EVR33
activation.
P14.5 O0 General-purpose output
TOUT85 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
TXDB O6 ERAY output
O7 Reserved
148 P14.6 I MP+ /
PU1 /
VEXT
General-purpose input
TIN86 GTM input
HWCFG0
DCLDO
SCU input
If EVR13 active, latched at cold power on reset to
decide between LDO and SMPS mode.
P14.6 O0 General-purpose output
TOUT86 O1 GTM output
O2 Reserved
SLSO22 O3 QSPI2 output
O4 Reserved
O5 Reserved
TXENB O6 ERAY output
O7 Reserved
149 P14.7 I LP /
PU1 /
VEXT
General-purpose input
TIN87 GTM input
RXDB0 ERAY input
P14.7 O0 General-purpose output
TOUT87 O1 GTM output
ARTS0 O2 ASCLIN0 output
SLSO24 O3 QSPI2 output
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-6 Port 14 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 33 V 1.0 2017-01
150 P14.8 I LP /
PU1 /
VEXT
General-purpose input
TIN88 GTM input
ARX1D ASCLIN1 input
RXDCAN2D CAN node 2 input
RXDA0 ERAY input
P14.8 O0 General-purpose output
TOUT88 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
151 P14.9 I MP+ /
PU1 /
VEXT
General-purpose input
TIN89 GTM input
ACTS0A ASCLIN0 input
P14.9 O0 General-purpose output
TOUT89 O1 GTM output
END03 O2 MSC0 output
EN01 O3 MSC0 output
O4 Reserved
TXENB O5 ERAY output
TXENA O6 ERAY output
O7 Reserved
152 P14.10 I MP+ /
PU1 /
VEXT
General-purpose input
TIN90 GTM input
P14.10 O0 General-purpose output
TOUT90 O1 GTM output
END02 O2 MSC0 output
EN00 O3 MSC0 output
ATX1 O4 ASCLIN1 output
TXDCAN2 O5 CAN node 2 output
TXDA O6 ERAY output
O7 Reserved
Table 2-6 Port 14 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 34 V 1.0 2017-01
Table 2-7 Port 15 Functions
Pin Symbol Ctrl Type Function
133 P15.0 I LP /
PU1 /
VEXT
General-purpose input
TIN71 GTM input
P15.0 O0 General-purpose output
TOUT71 O1 GTM output
ATX1 O2 ASCLIN1 output
SLSO013 O3 QSPI0 output
O4 Reserved
TXDCAN2 O5 CAN node 2 output
ASCLK1 O6 ASCLIN1 output
O7 Reserved
134 P15.1 I LP /
PU1 /
VEXT
General-purpose input
TIN72 GTM input
REQ16 SCU input
ARX1A ASCLIN1 input
RXDCAN2A CAN node 2 input
SLSI2B QSPI2 input
EVRWUPB SCU input
P15.1 O0 General-purpose output
TOUT72 O1 GTM output
ATX1 O2 ASCLIN1 output
SLSO25 O3 QSPI2 output
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
135 P15.2 I MP /
PU1 /
VEXT
General-purpose input
TIN73 GTM input
SLSI2A QSPI2 input
MRST2E QSPI2 input
P15.2 O0 General-purpose output
TOUT73 O1 GTM output
ATX0 O2 ASCLIN0 output
SLSO20 O3 QSPI2 output
O4 Reserved
TXDCAN1 O5 CAN node 1 output
ASCLK0 O6 ASCLIN0 output
O7 Reserved
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 35 V 1.0 2017-01
136 P15.3 I MP /
PU1 /
VEXT
General-purpose input
TIN74 GTM input
ARX0B ASCLIN0 input
SCLK2A QSPI2 input
RXDCAN1A CAN node 1 input
P15.3 O0 General-purpose output
TOUT74 O1 GTM output
ATX0 O2 ASCLIN0 output
SCLK2 O3 QSPI2 output
END03 O4 MSC0 output
EN01 O5 MSC0 output
O6 Reserved
O7 Reserved
137 P15.4 I MP /
PU1 /
VEXT
General-purpose input
TIN75 GTM input
MRST2A QSPI2 input
REQ0 SCU input
SCL0C I2C0 input
P15.4 O0 General-purpose output
TOUT75 O1 GTM output
ATX1 O2 ASCLIN1 output
MRST2 O3 QSPI2 output
O4 Reserved
O5 Reserved
SCL0 O6 I2C0 output
CC62 O7 CCU60 output
Table 2-7 Port 15 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 36 V 1.0 2017-01
138 P15.5 I MP /
PU1 /
VEXT
General-purpose input
TIN76 GTM input
ARX1B ASCLIN1 input
MTSR2A QSPI2 input
REQ13 SCU input
SDA0C I2C0 input
P15.5 O0 General-purpose output
TOUT76 O1 GTM output
ATX1 O2 ASCLIN1 output
MTSR2 O3 QSPI2 output
END02 O4 MSC0 output
EN00 O5 MSC0 output
SDA0 O6 I2C0 output
CC61 O7 CCU60 output
139 P15.6 I MP /
PU1 /
VEXT
General-purpose input
TIN77 GTM input
MTSR2B QSPI2 input
P15.6 O0 General-purpose output
TOUT77 O1 GTM output
ATX3 O2 ASCLIN3 output
MTSR2 O3 QSPI2 output
O4 Reserved
SCLK2 O5 QSPI2 output
ASCLK3 O6 ASCLIN3 output
CC60 O7 CCU60 output
140 P15.7 I MP /
PU1 /
VEXT
General-purpose input
TIN78 GTM input
ARX3A ASCLIN3 input
MRST2B QSPI2 input
P15.7 O0 General-purpose output
TOUT78 O1 GTM output
ATX3 O2 ASCLIN3 output
MRST2 O3 QSPI2 output
O4 Reserved
O5 Reserved
O6 Reserved
COUT60 O7 CCU60 output
Table 2-7 Port 15 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 37 V 1.0 2017-01
141 P15.8 I MP /
PU1 /
VEXT
General-purpose input
TIN79 GTM input
SCLK2B QSPI2 input
REQ1 SCU input
P15.8 O0 General-purpose output
TOUT79 O1 GTM output
O2 Reserved
SCLK2 O3 QSPI2 output
O4 Reserved
O5 Reserved
ASCLK3 O6 ASCLIN3 output
COUT61 O7 CCU60 output
Table 2-8 Port 20 Functions
Pin Symbol Ctrl Type Function
116 P20.0 I MP /
PU1 /
VEXT
General-purpose input
TIN59 GTM input
RXDCAN3C CAN node 3 input
T6EUDA GPT120 input
REQ9 SCU input
SYSCLK HSCT input
TGI0 OCDS input
P20.0 O0 General-purpose output
TOUT59 O1 GTM output
ATX3 O2 ASCLIN3 output
ASCLK3 O3 ASCLIN3 output
O4 Reserved
SYSCLK O5 HSCT output
O6 Reserved
O7 Reserved
TGO0 HWOU
T
OCDS; ENx
Table 2-7 Port 15 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 38 V 1.0 2017-01
117 P20.1 I LP /
PU1 /
VEXT
General-purpose input
TIN60 GTM input
TGI1 OCDS input
P20.1 O0 General-purpose output
TOUT60 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
TGO1 HWOU
T
OCDS; ENx
118 P20.2 I LP /
PU /
VEXT
General-purpose input
This pin is latched at power on reset release to enter
test mode.
TESTMODE OCDS input
P20.2 O0 Output function not available
O1 Output function not available
O2 Output function not available
O3 Output function not available
O4 Output function not available
O5 Output function not available
O6 Output function not available
O7 Output function not available
119 P20.3 I LP /
PU1 /
VEXT
General-purpose input
TIN61 GTM input
T6INA GPT120 input
ARX3C ASCLIN3 input
P20.3 O0 General-purpose output
TOUT61 O1 GTM output
ATX3 O2 ASCLIN3 output
SLSO09 O3 QSPI0 output
SLSO29 O4 QSPI2 output
TXDCAN3 O5 CAN node 3 output
O6 Reserved
O7 Reserved
Table 2-8 Port 20 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 39 V 1.0 2017-01
124 P20.6 I LP /
PU1 /
VEXT
General-purpose input
TIN62 GTM input
P20.6 O0 General-purpose output
TOUT62 O1 GTM output
ARTS1 O2 ASCLIN1 output
SLSO08 O3 QSPI0 output
SLSO28 O4 QSPI2 output
O5 Reserved
WDT2LCK O6 SCU output
O7 Reserved
125 P20.7 I LP /
PU1 /
VEXT
General-purpose input
TIN63 GTM input
ACTS1A ASCLIN1 input
RXDCAN0B CAN node 0 input
P20.7 O0 General-purpose output
TOUT63 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
WDT1LCK O6 SCU output
COUT63 O7 CCU61 output
126 P20.8 I MP /
PU1 /
VEXT
General-purpose input
TIN64 GTM input
P20.8 O0 General-purpose output
TOUT64 O1 GTM output
ASLSO1 O2 ASCLIN1 output
SLSO00 O3 QSPI0 output
SLSO10 O4 QSPI1 output
TXDCAN0 O5 CAN node 0 output
WDT0LCK O6 SCU output
CC60 O7 CCU61 output
Table 2-8 Port 20 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 40 V 1.0 2017-01
127 P20.9 I LP /
PU1 /
VEXT
General-purpose input
TIN65 GTM input
ARX1C ASCLIN1 input
RXDCAN3E CAN node 3 input
REQ11 SCU input
SLSI0B QSPI0 input
P20.9 O0 General-purpose output
TOUT65 O1 GTM output
O2 Reserved
SLSO01 O3 QSPI0 output
SLSO11 O4 QSPI1 output
O5 Reserved
WDTSLCK O6 SCU output
CC61 O7 CCU61 output
128 P20.10 I MP /
PU1 /
VEXT
General-purpose input
TIN66 GTM input
P20.10 O0 General-purpose output
TOUT66 O1 GTM output
ATX1 O2 ASCLIN1 output
SLSO06 O3 QSPI0 output
SLSO27 O4 QSPI2 output
TXDCAN3 O5 CAN node 3 output
ASCLK1 O6 ASCLIN1 output
CC62 O7 CCU61 output
129 P20.11 I MP /
PU1 /
VEXT
General-purpose input
TIN67 GTM input
SCLK0A QSPI0 input
P20.11 O0 General-purpose output
TOUT67 O1 GTM output
O2 Reserved
SCLK0 O3 QSPI0 output
O4 Reserved
O5 Reserved
O6 Reserved
COUT60 O7 CCU61 output
Table 2-8 Port 20 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 41 V 1.0 2017-01
130 P20.12 I MP /
PU1 /
VEXT
General-purpose input
TIN68 GTM input
MRST0A QSPI0 input
P20.12 O0 General-purpose output
TOUT68 O1 GTM output
O2 Reserved
MRST0 O3 QSPI0 output
MTSR0 O4 QSPI0 output
O5 Reserved
O6 Reserved
COUT61 O7 CCU61 output
131 P20.13 I MP /
PU1 /
VEXT
General-purpose input
TIN69 GTM input
SLSI0A QSPI0 input
P20.13 O0 General-purpose output
TOUT69 O1 GTM output
O2 Reserved
SLSO02 O3 QSPI0 output
SLSO12 O4 QSPI1 output
SCLK0 O5 QSPI0 output
O6 Reserved
COUT62 O7 CCU61 output
132 P20.14 I MP /
PU1 /
VEXT
General-purpose input
TIN70 GTM input
MTSR0A QSPI0 input
P20.14 O0 General-purpose output
TOUT70 O1 GTM output
O2 Reserved
MTSR0 O3 QSPI0 output
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-8 Port 20 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon l-4'U I'H-4
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 42 V 1.0 2017-01
Table 2-9 Port 21 Functions
Pin Symbol Ctrl Type Function
105 P21.0 I A2 /
PU1 /
VDDP3
General-purpose input
TIN51 GTM input
P21.0 O0 General-purpose output
TOUT51 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
ETHMDC O6 ETH output
O7 Reserved
HSM1 HWOU
T
HSM output 1
106 P21.1 I A2 /
PU1 /
VDDP3
General-purpose input
TIN52 GTM input
ETHMDIOB ETH input
(Not for production purposes)
P21.1 O0 General-purpose output
TOUT52 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
ETHMDIO O6 ETH output
(Not for production purposes)
O7 Reserved
HSM2 HWOU
T
HSM output 2
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 43 V 1.0 2017-01
107 P21.2 I LVDSH_N/
PU1 /
VDDP3
General-purpose input
TIN53 GTM input
MRST2CN QSPI2 input (LVDS)
MRST3FN QSPI3 input (LVDS)
ARX3GN ASCLIN3 input (LVDS)
EMGSTOPB SCU input
RXDN HSCT input (LVDS)
P21.2 O0 General-purpose output
TOUT53 O1 GTM output
ASLSO3 O2 ASCLIN3 output
O3 Reserved
O4 Reserved
ETHMDC O5 ETH output
O6 Reserved
O7 Reserved
108 P21.3 I LVDSH_P/
PU1 /
VDDP3
General-purpose input
TIN54 GTM input
MRST2CP QSPI2 input (LVDS)
MRST3FP QSPI3 input (LVDS)
ARX3GP ASCLIN3 input (LVDS)
RXDP HSCT input (LVDS)
P21.3 O0 General-purpose output
TOUT54 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
ETHMDIOD HWOU
T
ETH input/output
Table 2-9 Port 21 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 44 V 1.0 2017-01
109 P21.4 I LVDSH_N/
PU1 /
VDDP3
General-purpose input
TIN55 GTM input
P21.4 O0 General-purpose output
TOUT55 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
TXDN HSCT HSCT output (LVDS)
110 P21.5 I LVDSH_P/
PU1 /
VDDP3
General-purpose input
TIN56 GTM input
P21.5 O0 General-purpose output
TOUT56 O1 GTM output
ASCLK3 O2 ASCLIN3 output
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
TXDP HSCT HSCT output (LVDS)
1111) P21.6 I A2 /
PU /
VDDP3
General-purpose input
TIN57 GTM input
ARX3F ASCLIN3 input
TGI2 OCDS input
TDI OCDS (JTAG) input
T5EUDA GPT120 input
P21.6 O0 General-purpose output
TOUT57 O1 GTM output
ASLSO3 O2 ASCLIN3 output
O3 Reserved
O4 Reserved
SYSCLK O5 HSCT output
O6 Reserved
T3OUT O7 GPT120 output
TGO2 HWOU
T
OCDS; ENx
Table 2-9 Port 21 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon —<><>< |="">>-4'U-4m TGOS
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 45 V 1.0 2017-01
113 P21.7 I A2 /
PU /
VDDP3
General-purpose input
TIN58 GTM input
DAP2 OCDS input
TGI3 OCDS input
TDO OCDS (JTAG) input
The JTAG TDO function is overlayed with P21.7
via a double bond.
In JTAG mode this pin is used as TDO, after
power-on reset it is HighZ. In DAP mode this pin
is used as P21.7 and controlled by the related
port control logic
ETHRXERB ETH input
T5INA GPT120 input
P21.7 O0 General-purpose output
TOUT58 O1 GTM output
ATX3 O2 ASCLIN3 output
ASCLK3 O3 ASCLIN3 output
O4 Reserved
O5 Reserved
O6 Reserved
T6OUT O7 GPT120 output
TGO3 HWOU
T
OCDS; ENx
TDO OCDS (JTAG); ENx
The JTAG TDO function is overlayed with P21.7
via a double bond.
In JTAG mode this pin is used as TDO, after
power-on reset it is HighZ. In DAP mode this pin
is used as P21.7 and controlled by the related
port control logic
1) For an Emulation Device in a non Fusion Quad package this pin is used as VDDPSB (3.3V)
Table 2-9 Port 21 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 46 V 1.0 2017-01
Table 2-10 Port 22 Functions
Pin Symbol Ctrl Type Function
95 P22.0 I LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN47 GTM input
MTSR3E QSPI3 input
P22.0 O0 General-purpose output
TOUT47 O1 GTM output
ATX3N O2 ASCLIN3 output (LVDS)
MTSR3 O3 QSPI3 output
SCLK3N O4 QSPI3 output (LVDS)
FCLN1 O5 MSC1 output (LVDS)
FCLND1 O6 MSC1 output (LVDS)
O7 Reserved
96 P22.1 I LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN48 GTM input
MRST3E QSPI3 input
P22.1 O0 General-purpose output
TOUT48 O1 GTM output
ATX3P O2 ASCLIN3 output (LVDS)
MRST3 O3 QSPI3 output
SCLK3P O4 QSPI3 output (LVDS)
FCLP1 O5 MSC1 output (LVDS)
O6 Reserved
O7 Reserved
97 P22.2 I LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN49 GTM input
SLSI3D QSPI3 input
P22.2 O0 General-purpose output
TOUT49 O1 GTM output
O2 Reserved
SLSO312 O3 QSPI3 output
MTSR3N O4 QSPI3 output (LVDS)
SON1 O5 MSC1 output (LVDS)
SOND1 O6 MSC1 output (LVDS)
O7 Reserved
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 47 V 1.0 2017-01
98 P22.3 I LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN50 GTM input
SCLK3E QSPI3 input
P22.3 O0 General-purpose output
TOUT50 O1 GTM output
O2 Reserved
SCLK3 O3 QSPI3 output
MTSR3P O4 QSPI3 output (LVDS)
SOP1 O5 MSC1 output (LVDS)
O6 Reserved
O7 Reserved
Table 2-11 Port 23 Functions
Pin Symbol Ctrl Type Function
89 P23.0 I LP /
PU1 /
VEXT
General-purpose input
TIN41 GTM input
P23.0 O0 General-purpose output
TOUT41 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
90 P23.1 I MP+ /
PU1 /
VEXT
General-purpose input
TIN42 GTM input
SDI10 MSC1 input
P23.1 O0 General-purpose output
TOUT42 O1 GTM output
ARTS1 O2 ASCLIN1 output
SLSO313 O3 QSPI3 output
GTMCLK0 O4 GTM output
O5 Reserved
EXTCLK0 O6 SCU output
O7 Reserved
Table 2-10 Port 22 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 48 V 1.0 2017-01
91 P23.2 I LP /
PU1 /
VEXT
General-purpose input
TIN43 GTM input
P23.2 O0 General-purpose output
TOUT43 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
92 P23.3 I LP /
PU1 /
VEXT
General-purpose input
TIN44 GTM input
INJ10 MSC1 input
P23.3 O0 General-purpose output
TOUT44 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
93 P23.4 I MP+ /
PU1 /
VEXT
General-purpose input
TIN45 GTM input
P23.4 O0 General-purpose output
TOUT45 O1 GTM output
O2 Reserved
SLSO35 O3 QSPI3 output
END12 O4 MSC1 output
EN10 O5 MSC1 output
O6 Reserved
O7 Reserved
Table 2-11 Port 23 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 49 V 1.0 2017-01
94 P23.5 I MP+ /
PU1 /
VEXT
General-purpose input
TIN46 GTM input
P23.5 O0 General-purpose output
TOUT46 O1 GTM output
O2 Reserved
SLSO34 O3 QSPI3 output
END13 O4 MSC1 output
EN11 O5 MSC1 output
O6 Reserved
O7 Reserved
Table 2-12 Port 32 Functions
Pin Symbol Ctrl Type Function
84 P32.0 I LP /
EVR13 SMPS
-> PD,
GPIO - > PU
/
VEXT
General-purpose input
TIN36 GTM input
FDEST PMU input
VGATE1N SMPS mode: analog output. External Pass Device
gate control for EVR13
P32.0 O0 General-purpose output
TOUT36 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
86 P32.2 I LP /
PU1 /
VEXT
General-purpose input
TIN38 GTM input
ARX3D ASCLIN3 input
RXDCAN3B CAN node 3 input
P32.2 O0 General-purpose output
TOUT38 O1 GTM output
ATX3 O2 ASCLIN3 output
O3 Reserved
O4 Reserved
O5 Reserved
DCDCSYNC O6 SCU output
O7 Reserved
Table 2-11 Port 23 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 50 V 1.0 2017-01
87 P32.3 I LP /
PU1 /
VEXT
General-purpose input
TIN39 GTM input
P32.3 O0 General-purpose output
TOUT39 O1 GTM output
ATX3 O2 ASCLIN3 output
O3 Reserved
ASCLK3 O4 ASCLIN3 output
TXDCAN3 O5 CAN node 3 output
O6 Reserved
O7 Reserved
88 P32.4 I MP+ /
PU1 /
VEXT
General-purpose input
TIN40 GTM input
ACTS1B ASCLIN1 input
SDI12 MSC1 input
P32.4 O0 General-purpose output
TOUT40 O1 GTM output
O2 Reserved
END12 O3 MSC1 output
GTMCLK1 O4 GTM output
EN10 O5 MSC1 output
EXTCLK1 O6 SCU output
COUT63 O7 CCU60 output
Table 2-13 Port 33 Functions
Pin Symbol Ctrl Type Function
70 P33.0 I LP /
PU1 /
VEXT
General-purpose input
TIN22 GTM input
DSITR0E DSADC channel 0 input E
P33.0 O0 General-purpose output
TOUT22 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
VADCG2BFL0 O6 VADC output
O7 Reserved
Table 2-12 Port 32 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 51 V 1.0 2017-01
71 P33.1 I LP /
PU1 /
VEXT
General-purpose input
TIN23 GTM input
PSIRX0C PSI5 input
SENT9C SENT input
DSCIN2B DSADC channel 2 input B
DSITR1E DSADC channel 1 input E
P33.1 O0 General-purpose output
TOUT23 O1 GTM output
ASLSO3 O2 ASCLIN3 output
O3 Reserved
DSCOUT2 O4 DSADC channel 2 output
VADCEMUX02 O5 VADC output
VADCG2BFL1 O6 VADC output
O7 Reserved
72 P33.2 I LP /
PU1 /
VEXT
General-purpose input
TIN24 GTM input
SENT8C SENT input
DSDIN2B DSADC channel 2 input B
DSITR2E DSADC channel 2 input E
P33.2 O0 General-purpose output
TOUT24 O1 GTM output
ASCLK3 O2 ASCLIN3 output
O3 Reserved
PSITX0 O4 PSI5 output
VADCEMUX01 O5 VADC output
VADCG2BFL2 O6 VADC output
O7 Reserved
Table 2-13 Port 33 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 52 V 1.0 2017-01
73 P33.3 I LP /
PU1 /
VEXT
General-purpose input
TIN25 GTM input
PSIRX1C PSI5 input
SENT7C SENT input
DSCIN1B DSADC channel 1 input B
P33.3 O0 General-purpose output
TOUT25 O1 GTM output
O2 Reserved
O3 Reserved
DSCOUT1 O4 DSADC channel 1 output
VADCEMUX00 O5 VADC output
VADCG2BFL3 O6 VADC output
O7 Reserved
74 P33.4 I LP /
PU1 /
VEXT
General-purpose input
TIN26 GTM input
SENT6C SENT input
CTRAPC CCU61 input
DSDIN1B DSADC channel 1 input B
DSITR0F DSADC channel 0 input F
P33.4 O0 General-purpose output
TOUT26 O1 GTM output
ARTS2 O2 ASCLIN2 output
O3 Reserved
PSITX1 O4 PSI5 output
VADCEMUX12 O5 VADC output
VADCG0BFL0 O6 VADC output
O7 Reserved
Table 2-13 Port 33 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 53 V 1.0 2017-01
75 P33.5 I LP /
PU1 /
VEXT
General-purpose input
TIN27 GTM input
ACTS2B ASCLIN2 input
PSIRX2C PSI5 input
PSISRXC PSI5-S input
SENT5C SENT input
CCPOS2C CCU61 input
T4EUDB GPT120 input
DSCIN0B DSADC channel 0 input B
DSITR1F DSADC channel 1 input F
P33.5 O0 General-purpose output
TOUT27 O1 GTM output
SLSO07 O2 QSPI0 output
SLSO17 O3 QSPI1 output
DSCOUT0 O4 DSADC channel 0 output
VADCEMUX11 O5 VADC output
VADCG0BFL1 O6 VADC output
O7 Reserved
76 P33.6 I LP /
PU1 /
VEXT
General-purpose input
TIN28 GTM input
SENT4C SENT input
CCPOS1C CCU61 input
T2EUDB GPT120 input
DSDIN0B DSADC channel 0 input B
DSITR2F DSADC channel 2 input F
P33.6 O0 General-purpose output
TOUT28 O1 GTM output
ASLSO2 O2 ASCLIN2 output
- O3 Reserved
PSITX2 O4 PSI5 output
VADCEMUX10 O5 VADC output
VADCG1BFL0 O6 VADC output
PSISTX O7 PSI5-S output
Table 2-13 Port 33 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 54 V 1.0 2017-01
77 P33.7 I LP /
PU1 /
VEXT
General-purpose input
TIN29 GTM input
RXDCAN0E CAN node 0 input
REQ8 SCU input
CCPOS0C CCU61 input
T2INB GPT120 input
P33.7 O0 General-purpose output
TOUT29 O1 GTM output
ASCLK2 O2 ASCLIN2 output
SLSO37 O3 QSPI3 output
O4 Reserved
O5 Reserved
VADCG1BFL1 O6 VADC output
O7 Reserved
78 P33.8 I MP /
HighZ/
VEXT
General-purpose input
TIN30 GTM input
ARX2E ASCLIN2 input
EMGSTOPA SCU input
P33.8 O0 General-purpose output
TOUT30 O1 GTM output
ATX2 O2 ASCLIN2 output
SLSO32 O3 QSPI3 output
O4 Reserved
TXDCAN0 O5 CAN node 0 output
O6 Reserved
COUT62 O7 CCU61 output
SMUFSP HWOU
T
SMU
79 P33.9 I LP /
PU1 /
VEXT
General-purpose input
TIN31 GTM input
P33.9 O0 General-purpose output
TOUT31 O1 GTM output
ATX2 O2 ASCLIN2 output
SLSO31 O3 QSPI3 output
ASCLK2 O4 ASCLIN2 output
O5 Reserved
O6 Reserved
CC62 O7 CCU61 output
Table 2-13 Port 33 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 55 V 1.0 2017-01
80 P33.10 I MP /
PU1 /
VEXT
General-purpose input
TIN32 GTM input
SLSI3C QSPI3 input
P33.10 O0 General-purpose output
TOUT32 O1 GTM output
SLSO16 O2 QSPI1 output
SLSO311 O3 QSPI3 output
ASLSO1 O4 ASCLIN1 output
PSISCLK O5 PSI5-S output
O6 Reserved
COUT61 O7 CCU61 output
81 P33.11 I MP /
PU1 /
VEXT
General-purpose input
TIN33 GTM input
SCLK3D QSPI3 input
P33.11 O0 General-purpose output
TOUT33 O1 GTM output
ASCLK1 O2 ASCLIN1 output
SCLK3 O3 QSPI3 output
O4 Reserved
O5 Reserved
DSCGPWMN O6 DSADC output
CC61 O7 CCU61 output
82 P33.12 I MP /
PU1 /
VEXT
General-purpose input
TIN34 GTM input
MTSR3D QSPI3 input
P33.12 O0 General-purpose output
TOUT34 O1 GTM output
ATX1 O2 ASCLIN1 output
MTSR3 O3 QSPI3 output
ASCLK1 O4 ASCLIN1 output
O5 Reserved
DSCGPWMP O6 DSADC output
COUT60 O7 CCU61 output
Table 2-13 Port 33 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 56 V 1.0 2017-01
83 P33.13 I MP /
PU1 /
VEXT
General-purpose input
TIN35 GTM input
ARX1F ASCLIN1 input
MRST3D QSPI3 input
DSSGNB DSADC input
INJ11 MSC1 input
P33.13 O0 General-purpose output
TOUT35 O1 GTM output
ATX1 O2 ASCLIN1 output
MRST3 O3 QSPI3 output
SLSO26 O4 QSPI2 output
O5 Reserved
DCDCSYNC O6 SCU output
CC60 O7 CCU61 output
Table 2-14 Port 40 Functions
Pin Symbol Ctrl Type Function
44 P40.0 I S /
HighZ /
VDDM
General-purpose input
VADCG3.0 VADC analog input channel 0 of group 3
DS2PB DSADC: positive analog input channe of DSADC 2, pin
B
CCPOS0D CCU60 input
SENT0A SENT input
43 P40.1 I S /
HighZ /
VDDM
General-purpose inpu.t
VADCG3.1 VADC analog input channel 1 of group 3 (MD)
DS2NB DSADC: negative analog of input channel 2, pin B
CCPOS1B CCU60 input
SENT1A SENT input
42 P40.2 I S /
HighZ /
VDDM
General-purpose inpu.t
VADCG3.2 VADC analog input channel 2 of group 3 (MD)
CCPOS1D CCU60 input
SENT2A SENT input
41 P40.3 I S /
HighZ /
VDDM
General-purpose input
VADCG3.3 VADC analog input channel 3 of group 3
CCPOS2B CCU60 input
SENT3A SENT input
Table 2-13 Port 33 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 57 V 1.0 2017-01
38 P40.4 I S /
HighZ /
VDDM
General-purpose input
VADCG4.0 VADC analog input channel 0 of group 4
CCPOS2D CCU60 input
SENT4A SENT input
37 P40.5 I S /
HighZ /
VDDM
General-purpose input
VADCG4.1 VADC analog input channel 1 of group 4 (MD)
CCPOS0D CCU61 input
SENT5A SENT input
35 P40.6 I S /
HighZ /
VDDM
General-purpose input
VADCG4.4 VADC analog input channel 4 of group 4
DS3PA DSADC: positive analog input of channel 3, pin A
CCPOS1B CCU61 input
SENT6A SENT input
34 P40.7 I S /
HighZ /
VDDM
General-purpose input
VADCG4.5 VADC analog input channel 5 of group 4
DS3NA DSADC: negative analog input of channel 3, pin A
CCPOS1D CCU61 input
SENT7A SENT input
33 P40.8 I S /
HighZ /
VDDM
General-purpose input
VADCG4.6 VADC analog input channel 6 of group 4
DS3PB DSADC: positive analog input of channel 3, pin B
CCPOS2B CCU61 input
SENT8A SENT input
32 P40.9 I S /
HighZ /
VDDM
General-purpose input
VADCG4.7 VADC analog input channel 7 of group 4
DS3NB DSADC: negative analog input of channel 3, pin B
CCPOS2D CCU61 input
SENT9A SENT input
Table 2-15 Analog Inputs
Pin Symbol Ctrl Type Function
67 AN0 I D /
HighZ /
VDDM
Analog input 0
VADCG0.0 VADC analog input channel 0 of group 0
DS1PA DSADC: positive analog of input channel 1, pin A
66 AN1 I D /
HighZ /
VDDM
Analog input 1
VADCG0.1 VADC analog input channel 1 of group 0 (MD)
DS1NA DSADC: negative analog input of channel 1, pin A
Table 2-14 Port 40 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 58 V 1.0 2017-01
65 AN2 I D /
HighZ /
VDDM
Analog input 2
VADCG0.2 VADC analog input channel 2 of group 0 (MD)
DS0PA DSADC: positive analog input of channel 0, pin A
64 AN3 I D /
HighZ /
VDDM
Analog input 3
VADCG0.3 VADC analog input channel 3 of group 0
DS0NA DSADC: negative analog input of channel 0, pin A
63 AN4 I D /
HighZ /
VDDM
Analog input 4
VADCG0.4 VADC analog input channel 4 of group 0
62 AN5 I D /
HighZ /
VDDM
Analog input 5
VADCG0.5 VADC analog input channel 5 of group 0
61 AN6 I D /
HighZ /
VDDM
Analog input 6
VADCG0.6 VADC analog input channel 6 of group 0
60 AN7 I D /
HighZ /
VDDM
Analog input 7
VADCG0.7 VADC analog input channel 7 of group 0 (with pull
down diagnostics)
59 AN8 I D /
HighZ /
VDDM
Analog input 8
VADCG1.0 VADC analog input channel 0 of group 1
58 AN10 I D /
HighZ /
VDDM
Analog input 10
VADCG1.2 VADC analog input channel 2 of group 1 (MD)
57 AN11 I D /
HighZ /
VDDM
Analog input 11
VADCG1.3 VADC analog input channel 3 of group 1 (with pull
down diagnostics)
56 AN12 I D /
HighZ /
VDDM
Analog input 12
VADCG1.4 VADC analog input channel 4 of group 1
55 AN13 I D /
HighZ /
VDDM
Analog input 13
VADCG1.5 VADC analog input channel 5 of group 1
50 AN16 I D /
HighZ /
VDDM
Analog input 16
VADCG2.0 VADC analog input channel 0 of group 2
49 AN17 I D /
HighZ /
VDDM
Analog input 17
VADCG2.1 VADC analog input channel 1 of group 2 (MD)
48 AN18 I D /
HighZ /
VDDM
Analog input 18
VADCG2.2 VADC analog input channel 2 of group 2 (MD)
Table 2-15 Analog Inputs (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 59 V 1.0 2017-01
47 AN19 I D /
HighZ /
VDDM
Analog input 19
VADCG2.3 VADC analog input channel 3 of group 2 (with pull
down diagnostics)
46 AN20 I D /
HighZ /
VDDM
Analog input 20
VADCG2.4 I VADC analog input channel 4 of group 2
DS2PA I DSADC: positive analog input of channel 2, pin A
45 AN21 I D /
HighZ /
VDDM
Analog input 21
VADCG2.5 I VADC analog input channel 5 of group 2
DS2NA I DSADC: negative analog input of channel
of DSADC 2, pin A
44 AN24 I S /
HighZ /
VDDM
Analog input 24
VADCG3.0 VADC analog input channel 0 of group 3
DS2PB DSADC: positive analog input of channel 2, pin B
SENT0A SENT input channel 0, pin A
43 AN25 I S /
HighZ /
VDDM
Analog input 24
VADCG3.1 VADC analog input channel 1 of group 3 (MD)
DS2NB DSADC: negative analog input of channel 2, pin B
SENT1A SENT input channel 1, pin A
42 AN26 I S /
HighZ /
VDDM
Analog input 26
VADCG3.2 VADC analog input channel 2 of group 3 (MD)
SENT2A SENT input channel 2, pin A
41 AN27 I S /
HighZ /
VDDM
Analog input 27
VADCG3.3 VADC analog input channel 3 of group 3 (with pull
down diagnostics)
SENT3A SENT input channel 3, pin A
40 AN28 I D /
HighZ /
VDDM
Analog input 28
VADCG3.4 VADC analog input channel 4 of group 3
39 AN29 I D /
HighZ /
VDDM
Analog input 29
VADCG3.5 VADC analog input channel 5 of group 3
38 AN32 I S /
HighZ /
VDDM
Analog input 32
VADCG4.0 VADC analog input channel 0 of group 4
SENT4A SENT input channel 4, pin A
37 AN33 I S /
HighZ /
VDDM
Analog input 33
VADCG4.1 VADC analog input channel 1 of group 4 (MD)
SENT5A SENT input channel 5, pin A
36 AN35 I D /
HighZ /
VDDM
Analog input 35
VADCG4.3 VADC analog input channel 3 of group 4 (with pull
down diagnostics)
Table 2-15 Analog Inputs (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 60 V 1.0 2017-01
35 AN36 I S /
HighZ /
VDDM
Analog input 34
VADCG4.4 VADC analog input channel 4 of group 4
DS3PA DSADC: positive analog input of channel
of DSADC 3, pin A
SENT6A SENT input channel 6, pin A
34 AN37 I S /
HighZ /
VDDM
Analog input 37
VADCG4.5 VADC analog input channel 5 of group 4
DS3NA DSADC: negative analog input of channel
of DSADC 3, pin A
SENT7A SENT input channel 7, pin A
33 AN38 I S /
HighZ /
VDDM
Analog input 38
VADCG4.6 VADC analog input channel 6 of group 4
DS3PB DSADC: positive analog input of channel
of DSADC 3, pin B
SENT8A SENT input channel 8, pin A
32 AN39 I S /
HighZ /
VDDM
Analog input 39
VADCG4.7 VADC analog input channel 7 of group 4
DS3NB DSADC: negative analog input of channel
of DSADC 3, pin B
SENT9A SENT input channel 9, pin A
31 AN44 I D /
HighZ /
VDDM
Analog input 44
VADCG5.4 VADC analog input channel 4 of group 5
DS3PC DSADC: positive analog input of channel
of DSADC 3, pin C
30 AN45 I D /
HighZ /
VDDM
Analog input 45
VADCG5.5 VADC analog input channel 5 of group 5
DS3NC DSADC: negative analog input of channel
of DSADC 3, pin C
29 AN46 I D /
HighZ /
VDDM
Analog input 46
VADCG5.6 VADC analog input channel 6 of group 5
DS3PD DSADC: positive analog input of channel
of DSADC 3, pin D
28 AN47 I D /
HighZ /
VDDM
Analog input 47
VADCG5.7 VADC analog input channel 7 of group 5
DS3ND DSADC: negative analog input of channel
of DSADC 3, pin D
Table 2-15 Analog Inputs (cont’d)
Pin Symbol Ctrl Type Function
@neon ESRO TRST
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 61 V 1.0 2017-01
Table 2-16 System I/O
Pin Symbol Ctrl Type Function
121 PORST II /
PD /
VEXT
Power On Reset Input
Additional strong PD in case of power fail.
122 ESR0 I/O MP /
OD /
VEXT
External System Request Reset 0
Default configuration during and after reset is open-
drain driver. The driver drives low during power-on
reset. This is valid additionally after deactivation of
PORST until the internal reset phase has finished. See
also SCU chapter for details.
Default after power-on can be different. See also SCU
chapter ´Reset Control Unit´ and SCU_IOCR register
description.
EVRWUP I EVR Wakeup Pin
120 ESR1 I/O MP / PU1 /
VEXT
External System Request Reset 1
Default NMI function.
See also SCU chapter ´Reset Control Unit´ and
SCU_IOCR register description.
EVRWUP I EVR Wakeup Pin
85 VGATE1P O VGATE1P
/
- /
VEXT
External Pass Device gate control for EVR13
112 TMS I A2 /
PD /
VDDP3
JTAG Module State Machine Control Input
DAP1 I/O Device Access Port Line 1
114 TRST IA2 /
PD /
VDDP3
JTAG Module Reset/Enable Input
115 TCK I A2 /
PD /
VDDP3
JTAG Module Clock Input
DAP0 I Device Access Port Line 0
102 XTAL1 I XTAL1 /
- /
VDDP3
Main Oscillator/PLL/Clock Generator Input
103 XTAL2 O XTAL2 /
- /
VDDP3
Main Oscillator/PLL/Clock Generator Output
Table 2-17 Supply
Pin Symbol Ctrl Type Function
52 VAREF1 I Vx Positive Analog Reference Voltage 1
51 VAGND1 I Vx Negative Analog Reference Voltage 1
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 62 V 1.0 2017-01
Legend:
Column “Ctrl.”:
I = Input (for GPIO port Lines with IOCR bit field Selection PCx = 0XXXB)
O = Output
O0 = Output with IOCR bit field selection PCx = 1X000B
O1 = Output with IOCR bit field selection PCx = 1X001B (ALT1)
O2 = Output with IOCR bit field selection PCx = 1X010B (ALT2)
26 VAREF2 I Vx Positive Analog Reference Voltage 2
27 VAGND2 I Vx Negative Analog Reference Voltage 2
54 VDDM I Vx ADC Analog Power Supply (3.3V / 5V)
101 VSS I Vx Digital Ground
10 VDD / VDDSB I Vx Emulation Device: Emulation SRAM Standby Power
Supply (1.3V) (Emulation Device only).
Production Device: VDD (1.3V).
123, 68,
24
VDD I Vx Digital Core Power Supply (1.3V)
100 VDD I Vx Digital Core Power Supply (1.3V).
The supply pin inturn supplies the main XTAL
Oscillator/PLL (1.3V) . A higher decoupling capacitor is
therefore recommended to the VSS pin for better noise
immunity.
153, 99,
69, 25
VEXT I Vx External Power Supply (5V / 3.3V)
154 VDDP3 I Vx Digital Power Supply for Flash (3.3V).
Can be also used as external 3.3V Power Supply for
VFLEX.
104 VDDP3 I Vx Digital Power Supply for Oscillator, LVDSH and A2
pads (3.3V).
The supply pin inturn supplies the main XTAL
Oscillator/PLL (3.3V) . A higher decoupling capacitor is
therefore recommended to the VSS pin for better noise
immunity.
155 VDDFL3 I Vx Flash Power Supply (3.3V)
164 VFLEX I Vx Digital Power Supply for Flex Port Pads
(5V / 3.3V)
53 VSSM I Vx Analog Ground for VDDM
Table 2-17 Supply (cont’d)
Pin Symbol Ctrl Type Function
inneon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 63 V 1.0 2017-01
O3 = Output with IOCR bit field selection PCx = 1X011B (ALT3)
O4 = Output with IOCR bit field selection PCx = 1X100B (ALT4)
O5 = Output with IOCR bit field selection PCx = 1X101B (ALT5)
O6 = Output with IOCR bit field selection PCx = 1X110B (ALT6)
O7 = Output with IOCR bit field selection PCx = 1X111B (ALT7)
Column “Type”:
LP = Pad class LP (5V/3.3V, LVTTL)
MP = Pad class MP (5V/3.3V, LVTTL)
MP+ = Pad class MP+ (5V/3.3V, LVTTL)
MPR = Pad class MPR (5V/3.3V, LVTTL)
A2 = Pad class A2 (3.3V, LVTTL)
LVDSM = Pad class LVDSM (LVDS/CMOS 5V/3.3V)
LVDSH = Pad class LVDSH (LVDS/CMOS 3.3V)
S = Pad class S (ADC overlayed with General Purpose Input)
D = Pad class D (ADC)
PU = with pull-up device connected during reset (PORST = 0)
PU1 = with pull-up device connected during reset (PORST = 0)1) 2) 3)
PD = with pull-down device connected during reset (PORST = 0)
PD1 = with pull-down device connected during reset (PORST = 0)1) 2) 3)
PX = Behavior depends on usage: PD in EVR13 SMPS Mode and PU1 in GPIO Mode
OD = open drain during reset (PORST = 0)
HighZ = tri-state during reset (PORST = 0)
PORST =PORST input pad
XTAL1 = XTAL1 input pad
XTAL2 = XTAL2 input pad
VGATE1P = VGATE1P
VGATE3P = VGATE3P
Vx = Supply (the Exposed Pad is also considered as VSS and shall be connected to ground)
NC = These pins are reserved for future extensions and shall not be connected externally
NC1 = These pins are not connected on package level and will not be used for future extensions
NCVDDPSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
NCVDDSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
2.1.2 Emergency Stop Function
The Emergency Stop function can be used to force GPIOs (General Purpose Inputs/Outputs) via an external input
signal (EMGSTOPA or EMGSTOPB) into a defined state:
Input state and
PU or High-Z depending on HWCFG[6] level latched during PORST active
Control of the Emergency Stop function:
1)The default state of GPIOs (Px.y) during and after PORST active is controllled via HWCFG[6] (P14.4). HWCFG[6] has a weak
internal pull-up active at start-up if the pin is left unconnected.See also User´s Manual, “Introduction Chapter”, “General
Purpose I/O Ports and Peripheral I/O Lines”, Figure: “Default state of port pins during and after reset”.
2) If HWCFG[6] is left unconnected or is externally pulled high, weak internal pull-ups (PU1) / pull-downs (PD1) are active
during and after reset.
3) If HWCFG[6] is connected to ground, the PD1 / PU1 pins are predominantly in HighZ during and after reset.
inneon m mm W W ESRO
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC275x Pin Definition and Functions:
Data Sheet 64 V 1.0 2017-01
The Emergency Stop function can be enabled/disabled in the SCU (see chapter “SCU”, “Emergency Stop
Control”)
The Emergency Stop input signal, EMGSTOPA (P33.8) / EMGSTOPB (P21.2) , can selected in the SCU (see
chapter “SCU”, “Emergency Stop Control”)
On port level, each GPIO can be enabled/disabled for the Emergency Stop function via the Px_ESR (Port x
Emergency Stop) registers in the port control logic (see chapter “General Purpose I/O Ports and Peripheral I/O
Lines”, “Emergency Stop Register”).
The Emergency Stop function is available for all GPIO Ports with the following exceptions:
Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode)
Not available for P40.x (analoge input ANx overlayed with GPI)
Not available for P32.0 EVR13 SMPS mode.
Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK)
The Emergency Stop function can be overruled on the following GPIO Ports:
P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register
P00_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00)
P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL mode (DAP over can physical layer mode).
No Overruling in the DXCM (Debug over can message) mode
P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI
P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode
P20.0: Emergency Stop can be overruled in JTAG mode if this GPIO is used as TDI
2.1.3 Pull-Up/Pull-Down Reset Behavior of the Pins
In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case
of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on.
Table 2-18 List of Pull-Up/Pull-Down Reset Behavior of the Pins
Pins PORST = 0 PORST = 1
all GPIOs Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0
TDI, TESTMODE Pull-up
PORST1)
1) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.
Pull-down with IPORST relevant Pull-down with IPDLI relevant
TRST, TCK, TMS Pull-down
ESR0 The open-drain driver is used to
drive low.2)
2)Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details.
Pull-up3)
3) See the SCU_IOCR register description.
ESR1 Pull-up3)
TDO Pull-up High-Z/Pull-up4)
4) Depends on JTAG/DAP selection with TRST.
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 65 V 1.0 2017-01
2.2 TC277x Pin Definition and Functions: BGA292
Figure 2-2 is showing the TC277x Logic Symbol for the package variant: BGA292.
Figure 2-2 TC277x Logic Symbol for the package variant BGA292.
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
YVSS P32.3 P32.2 P32.0 P33.13 P33.11 P33.9 P33.7 P33.5 P33.3 P33.1 AN5 AN10 VAGND1 VAREF1 VDDM VSSM AN20 AN21 NC Y
WVEXT VSS P32.4 VGATE1
PP33.12 P33.10 P33.8 P33.6 P33. 4 P33.2 P33.0 AN2 AN8 AN11 AN13 AN16 AN18 AN19 AN24 AN25 W
VP23.0 VEXT
17 16 15 14 13 12 11 10 9 8 7 6 5 4
AN26 AN27 V
UP23.2 P23.1 UVSS P32.7 P32.6 P33.15 P34.5 P34.3 P34.1 AN1 AN3 AN7 AN9 AN14 AN17 NC UAN28 AN29 U
TP23.4 P23.3 TP23.5 VSS P32.5 P33.14 P34.4 P34.2 VEVRSB AN0 AN4 AN6 AN12 AN15 AN22 AN30 TVAGND2 VAREF2 T
RP22.2 P22.3 RP23.6 P23.7 AN23 AN31 RAN35 AN33 R
PP22.0 P22.1 PP22.5 P22.4 VDD VSS
VSS
(AGBT
TX0P)
VSS
(AGBT
TX0N)
VSS VDD AN34 AN32 PAN37 AN39 P
NVDDP3 VDD NP22.7 P22.6 VDD VSS VSS VSS VSS VDD AN38 AN36 NAN45 AN44 N
MXT AL 1 XT AL 2 MP22.9 P22.8 VSS VSS VSS VSS VSS VSS AN40 AN41 MAN47 AN46 M
LVSS TRST LP22.11 P22.10
VSS
(AGBT
ERR)
VSS VSS VSS VSS VSS VSS
VSS
(AGBT
CLKN)
AN42 AN43 LP00.12 P00.11 L
KP21.4 P21.2 KP21.0 TMS NC
(VDDPSB) VSS VSS VSS VSS VSS VSS
VSS
(AGBT
CLKP)
P00.10 P00.8
KP00.9 P00.7 K
JP21.5 P21.3 JP21.1 TCK VSS VSS VSS VSS VSS VSS P01.7 P00.6 JP00.5 P00.4
J
HP20.0 P20.2 HP21.6 P21.7 VDD VSS VSS VSS VSS VDD
(VDDSB) P01.5 P01.6 HP00.3 P00.2
H
GP20.3 P20.1 GPORST ESR1 VDD VSS VSS VSS VSS VDD
(VDDSB) P01.3 P01.4 GP00.1 P00.0 G
FP20.8 P20.7 FP20.6 ESR0 P02.10 P02.11 FP02.7 P02.8 F
EP20.11 P20.10 EP20.9 VSS VDDFL3 P15.5 P14.2 P12.0 P12.1 P11.0 P11.1 P11.7 P11.8 P11.13 VSS P02. 9 EP02.5 P02.6 E
DP20.13 P20.12 DVSS VDDFL3 P15.7 P15.8 P14.7 P14.9 P14.10 P11.4 P11.6 P11.5 P11.14 P11.15 VFLEX VSS DP02.3 P02.4 D
CP20.14 P15.2
17 16 15 14 13 12 11 10 9 8 7 6 5 4
P02.1 P02.2 C
BP15.0 VSS VDDP3 P15.3 P14.0 P14.4 P14.3 P14.6 P13.0 P13.2 P11.3 P11.10 P11.12 P10.1 P10.4 P10.5 P10.8 VEXT VSS P02.0 B
AVSS VDDP3 P15.1 P15.4 P15.6 P14.1 P14.5 P14.8 P13.1 P13.3 P11.2 P11.9 P11.11 P10.0 P10.3 P10.2 P10.6 P10.7 VEXT NC A
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Top-View
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 66 V 1.0 2017-01
2.2.1 TC277xBGA292 Package Variant Pin Configuration
Table 2-19 Port 00 Functions
Pin Symbol Ctrl Type Function
G1 P00.0 I MP /
PU1 /
VEXT
General-purpose input
TIN9 GTM input
CTRAPA CCU61 input
T12HRE CCU60 input
INJ00 MSC0 input
CIFD9 CIF input
P00.0 O0 General-purpose output
TOUT9 O1 GTM output
ASCLK3 O2 ASCLIN3 output
ATX3 O3 ASCLIN3 output
O4 Reserved
TXDCAN1 O5 CAN node 1 output
O6 Reserved
COUT63 O7 CCU60 output
ETHMDIOA HWOU
T
ETH input/output
G2 P00.1 I LP /
PU1 /
VEXT
General-purpose input
TIN10 GTM input
ARX3E ASCLIN3 input
RXDCAN1D CAN node 1 input
PSIRX0A PSI5 input
SENT0B SENT input
CC60INB CCU60 input
CC60INA CCU61 input
DSCIN5A DSADC channel 5 input A
DS5NA DSADC negative analog input of channel 5, pin A
VADCG7.5 VADC analog input channel 5 of group 7
CIFD10 CIF input
P00.1 O0 General-purpose output
TOUT10 O1 GTM output
ATX3 O2 ASCLIN3 output
O3 Reserved
DSCOUT5 O4 DSADC channel 5 output
O5 Reserved
SPC0 O6 SENT output
CC60 O7 CCU61 output
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 67 V 1.0 2017-01
H1 P00.2 I LP /
PU1 /
VEXT
General-purpose input
TIN11 GTM input
SENT1B SENT input
DSDIN5A DSADC channel 5 input A
DS5PA DSADC positive analog input of channel 5, pin A
VADCG7.4 VADC analog input channel 4 of group 7
CIFD11 CIF input
P00.2 O0 General-purpose output
TOUT11 O1 GTM output
ASCLK3 O2 ASCLIN3 output
O3 Reserved
PSITX0 O4 PSI5 output
TXDCAN3 O5 CAN node 3 output
O6 Reserved
COUT60 O7 CCU61 output
H2 P00.3 I LP /
PU1 /
VEXT
General-purpose input
TIN12 GTM input
RXDCAN3A CAN node 3 input
PSIRX1A PSI5 input
PSISRXA PSI5-S input
SENT2B SENT input
CC61INB CCU60 input
CC61INA CCU61 input
DSCIN3A DSADC channel 3 input A
VADCG7.3 VADC analog input channel 3 of group 7
DSITR5F DSADC channel 5 input F
CIFD12 CIF input
P00.3 O0 General-purpose output
TOUT12 O1 GTM output
ASLSO3 O2 ASCLIN3 output
O3 Reserved
DSCOUT3 O4 DSADC channel 3 output
O5 Reserved
SPC2 O6 SENT output
CC61 O7 CCU61 output
Table 2-19 Port 00 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 68 V 1.0 2017-01
J1 P00.4 I LP /
PU1 /
VEXT
General-purpose input
TIN13 GTM input
REQ7 SCU input
SENT3B SENT input
DSDIN3A DSADC channel 3 input A
DSSGNA DSADC input
VADCG7.2 VADC analog input channel 2 of group 7 (MD)
CIFD13 CIF input
P00.4 O0 General-purpose output
TOUT13 O1 GTM output
PSISTX O2 PSI5-S output
O3 Reserved
PSITX1 O4 PSI5 output
VADCG4BFL0 O5 VADC output
SPC3 O6 SENT output
COUT61 O7 CCU61 output
J2 P00.5 I LP /
PU1 /
VEXT
General-purpose input
TIN14 GTM input
PSIRX2A PSI5 input
SENT4B SENT input
CC62INB CCU60 input
CC62INA CCU61 input
DSCIN2A DSADC channel 2 input A
VADCG7.1 VADC analog input channel 1 of group 7 (MD)
CIFD14 CIF input
P00.5 O0 General-purpose output
TOUT14 O1 GTM output
DSCGPWMN O2 DSADC output
O3 Reserved
DSCOUT2 O4 DSADC channel 2 output
VADCG4BFL1 O5 VADC output
SPC4 O6 SENT output
CC62 O7 CCU61 output
Table 2-19 Port 00 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 69 V 1.0 2017-01
J4 P00.6 I LP /
PU1 /
VEXT
General-purpose input
TIN15 GTM input
SENT5B SENT input
DSDIN2A DSADC channel 2 input A
VADCG7.0 VADC analog input channel 0 of group 7
DSITR4F DSADC channel 4 input F
CIFD15 CIF input
P00.6 O0 General-purpose output
TOUT15 O1 GTM output
DSCGPWMP O2 DSADC output
VADCG4BFL2 O3 VADC output
PSITX2 O4 PSI5 output
VADCEMUX10 O5 VADC output
SPC5 O6 SENT output
COUT62 O7 CCU61 output
K1 P00.7 I LP /
PU1 /
VEXT
General-purpose input
TIN16 GTM input
SENT6B SENT input
CC60INC CCU61 input
CCPOS0A CCU61 input
T12HRB CCU60 input
T2INA GPT120 input
DSCIN4A DSADC channel 4 input A
DS4NA DSADC negative analog input of channel 4, pin A
VADCG6.5 VADC analog input channel 5 of group 6
CIFCLK CIF input
P00.7 O0 General-purpose output
TOUT16 O1 GTM output
O2 Reserved
VADCG4BFL3 O3 VADC output
DSCOUT4 O4 DSADC channel 4 output
VADCEMUX11 O5 VADC output
SPC6 O6 SENT output
CC60 O7 CCU61 output
Table 2-19 Port 00 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 70 V 1.0 2017-01
K4 P00.8 I LP /
PU1 /
VEXT
General-purpose input
TIN17 GTM input
SENT7B SENT input
CC61INC CCU61 input
CCPOS1A CCU61 input
T13HRB CCU60 input
T2EUDA GPT120 input
DSDIN4A DSADC channel 4 input A
DS4PA DSADC channel 4 input A
VADCG6.4 VADC analog input channel 4 of group 6
CIFVSNC CIF input
P00.8 O0 General-purpose output
TOUT17 O1 GTM output
SLSO36 O2 QSPI3 output
O3 Reserved
O4 Reserved
VADCEMUX12 O5 VADC output
SPC7 O6 SENT output
CC61 O7 CCU61 output
Table 2-19 Port 00 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 71 V 1.0 2017-01
K2 P00.9 I LP /
PU1 /
VEXT
General-purpose input
TIN18 GTM input
SENT8B SENT input
CC62INC CCU61 input
CCPOS2A CCU61 input
T13HRC CCU60 input
T12HRC CCU60 input
T4EUDA GPT120 input
DSCIN1A DSADC channel 1 input A
VADCG6.3 VADC analog input channel 3 of group 6
DSITR3F DSADC channel 3 input F
CIFHSNC CIF input
P00.9 O0 General-purpose output
TOUT18 O1 GTM output
SLSO37 O2 QSPI3 output
ARTS3 O3 ASCLIN3 output
DSCOUT1 O4 DSADC channel 1 output
O5 Reserved
SPC8 O6 SENT output
CC62 O7 CCU61 output
K5 P00.10 I LP /
PU1 /
VEXT
General-purpose input
TIN19 GTM input
SENT9B SENT input
DSDIN1A DSADC channel 1 input A
VADCG6.2 VADC analog input channel 2 of group 6 (MD)
P00.10 O0 General-purpose output
TOUT19 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
SPC9 O6 SENT output
COUT63 O7 CCU61 output
Table 2-19 Port 00 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 72 V 1.0 2017-01
L1 P00.11 I LP /
PU1 /
VEXT
General-purpose input
TIN20 GTM input
CTRAPA CCU60 input
T12HRE CCU61 input
DSCIN0A DSADC channel 0 input A
VADCG6.1 VADC analog input channel 1 of group 6 (MD)
P00.11 O0 General-purpose output
TOUT20 O1 GTM output
O2 Reserved
O3 Reserved
DSCOUT0 O4 DSADC channel 0 output
O5 Reserved
O6 Reserved
O7 Reserved
L2 P00.12 I LP /
PU1 /
VEXT
General-purpose input
TIN21 GTM input
ACTS3A ASCLIN3 input
DSDIN0A DSADC channel 0 input A
VADCG6.0 VADC analog input channel 0 of group 6
P00.12 O0 General-purpose output
TOUT21 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
COUT63 O7 CCU61 output
Table 2-19 Port 00 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 73 V 1.0 2017-01
Table 2-20 Port 01 Functions
Pin Symbol Ctrl Type Function
G5 P01.3 I LP /
PU1 /
VEXT
General-purpose input
TIN111 GTM input
SLSI3B QSPI3 input
P01.3 O0 General-purpose output
TOUT111 O1 GTM output
O2 Reserved
O3 Reserved
SLSO39 O4 QSPI3 output
TXDCAN1 O5 CAN node 1 output
O6 Reserved
O7 Reserved
G4 P01.4 I LP /
PU1 /
VEXT
General-purpose input
TIN112 GTM input
RXDCAN1C CAN node 1 input
P01.4 O0 General-purpose output
TOUT112 O1 GTM output
O2 Reserved
O3 Reserved
SLSO310 O4 QSPI3 output
O5 Reserved
O6 Reserved
O7 Reserved
H5 P01.5 I LP /
PU1 /
VEXT
General-purpose input
TIN113 GTM input
MRST3C QSPI3 input
P01.5 O0 General-purpose output
TOUT113 O1 GTM output
O2 Reserved
O3 Reserved
MRST3 O4 QSPI3 output
O5 Reserved
O6 Reserved
O7 Reserved
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 74 V 1.0 2017-01
H4 P01.6 I LP /
PU1 /
VEXT
General-purpose input
TIN114 GTM input
MTSR3C QSPI3 input
P01.6 O0 General-purpose output
TOUT114 O1 GTM output
O2 Reserved
O3 Reserved
MTSR3 O4 QSPI3 output
O5 Reserved
O6 Reserved
O7 Reserved
J5 P01.7 I LP /
PU1 /
VEXT
General-purpose input
TIN115 GTM input
SCLK3C QSPI3 input
P01.7 O0 General-purpose output
TOUT115 O1 GTM output
O2 Reserved
O3 Reserved
SCLK3 O4 QSPI3 output
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-20 Port 01 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 75 V 1.0 2017-01
Table 2-21 Port 02 Functions
Pin Symbol Ctrl Type Function
B1 P02.0 I MP+ /
PU1 /
VEXT
General-purpose input
TIN0 GTM input
ARX2G ASCLIN2 input
REQ6 SCU input
CC60INA CCU60 input
CC60INB CCU61 input
CIFD0 CIF input
P02.0 O0 General-purpose output
TOUT0 O1 GTM output
ATX2 O2 ASCLIN2 output
SLSO31 O3 QSPI3 output
DSCGPWMN O4 DSADC output
TXDCAN0 O5 CAN node 0 output
TXDA O6 ERAY output
CC60 O7 CCU60 output
C2 P02.1 I LP / PU1
/ VEXT
General-purpose input
TIN1 GTM input
REQ14 SCU input
ARX2B ASCLIN2 input
RXDCAN0A CAN node 0 input
RXDA2 ERAY input
CIFD1 CIF input
P02.1 O0 General-purpose output
TOUT1 O1 GTM output
O2 Reserved
SLSO32 O3 QSPI3 output
DSCGPWMP O4 DSADC output
O5 Reserved
O6 Reserved
COUT60 O7 CCU60 output
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 76 V 1.0 2017-01
C1 P02.2 I MP+ /
PU1 /
VEXT
General-purpose input
TIN2 GTM input
CC61INA CCU60 input
CC61INB CCU61 input
CIFD2 CIF input
P02.2 O0 General-purpose output
TOUT2 O1 GTM output
ATX1 O2 ASCLIN1 output
SLSO33 O3 QSPI3 output
PSITX0 O4 PSI5 output
TXDCAN2 O5 CAN node 2 output
TXDB O6 ERAY output
CC61 O7 CCU60 output
D2 P02.3 I LP /
PU1 /
VEXT
General-purpose input
TIN3 GTM input
ARX1G ASCLIN1 input
RXDCAN2B CAN node 2 input
RXDB2 ERAY input
PSIRX0B PSI5 input
DSCIN5B DSADC channel 5 input B
SDI11 MSC1 input
CIFD3 CIF input
P02.3 O0 General-purpose output
TOUT3 O1 GTM output
ASLSO2 O2 ASCLIN2 output
SLSO34 O3 QSPI3 output
DSCOUT5 O4 DSADC channel 5 output
O5 Reserved
O6 Reserved
COUT61 O7 CCU60 output
Table 2-21 Port 02 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 77 V 1.0 2017-01
D1 P02.4 I MP+ /
PU1 /
VEXT
General-purpose input
TIN4 GTM input
SLSI3A QSPI3 input
ECTT1 TTCAN input
RXDCAN0D CAN node 0 input
CC62INA CCU60 input
CC62INB CCU61 input
DSDIN5B DSADC channel 5 input B
SDA0A I2C0 input
CIFD4 CIF input
P02.4 O0 General-purpose output
TOUT4 O1 GTM output
ASCLK2 O2 ASCLIN2 output
SLSO30 O3 QSPI3 output
PSISCLK O4 PSI5-S output
SDA0 O5 I2C0 output
TXENA O6 ERAY output
CC62 O7 CCU60 output
E2 P02.5 I MP+ /
PU1 /
VEXT
General-purpose input
TIN5 GTM input
MRST3A QSPI3 input
ECTT2 TTCAN input
PSIRX1B PSI5 input
PSISRXB PSI5-S input
SENT3C SENT input
DSCIN4B DSADC channel 4 input B
SCL0A I2C0 input
CIFD5 CIF input
P02.5 O0 General-purpose output
TOUT5 O1 GTM output
TXDCAN0 O2 CAN node 0 output
MRST3 O3 QSPI3 output
DSCOUT4 O4 DSADC channel 4 output
SCL0 O5 I2C0 output
TXENB O6 ERAY output
COUT62 O7 CCU60 output
Table 2-21 Port 02 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 78 V 1.0 2017-01
E1 P02.6 I MP /
PU1 /
VEXT
General-purpose input
TIN6 GTM input
MTSR3A QSPI3 input
SENT2C SENT input
CC60INC CCU60 input
CCPOS0A CCU60 input
T12HRB CCU61 input
T3INA GPT120 input
CIFD6 CIF input
DSDIN4B DSADC channel 4 input B
DSITR5E DSADC channel 5 input E
P02.6 O0 General-purpose output
TOUT6 O1 GTM output
PSISTX O2 PSI5-S output
MTSR3 O3 QSPI3 output
PSITX1 O4 PSI5 output
VADCEMUX00 O5 VADC output
O6 Reserved
CC60 O7 CCU60 output
Table 2-21 Port 02 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 79 V 1.0 2017-01
F2 P02.7 I MP /
PU1 /
VEXT
General-purpose input
TIN7 GTM input
SCLK3A QSPI3 input
PSIRX2B PSI5 input
SENT1C SENT input
CC61INC CCU60 input
CCPOS1A CCU60 input
T13HRB CCU61 input
T3EUDA GPT120 input
CIFD7 CIF input
DSCIN3B DSADC channel 3 input B
DSITR4E DSADC channel 4 input E
P02.7 O0 General-purpose output
TOUT7 O1 GTM output
O2 Reserved
SCLK3 O3 QSPI3 output
DSCOUT3 O4 DSADC channel 3 output
VADCEMUX01 O5 VADC output
SPC1 O6 SENT output
CC61 O7 CCU60 output
Table 2-21 Port 02 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 80 V 1.0 2017-01
F1 P02.8 I LP / PU1
/
VEXT
General-purpose input
TIN8 GTM input
SENT0C SENT input
CC62INC CCU60 input
CCPOS2A CCU60 input
T12HRC CCU61 input
T13HRC CCU61 input
T4INA GPT120 input
CIFD8 CIF input
DSDIN3B DSADC channel 3 input B
DSITR3E DSADC channel 3 input E
P02.8 O0 General-purpose output
TOUT8 O1 GTM output
SLSO35 O2 QSPI3 output
O3 Reserved
PSITX2 O4 PSI5 output
VADCEMUX02 O5 VADC output
ETHMDC O6 ETH output
CC62 O7 CCU60 output
E4 P02.9 I LP /
PU1 /
VEXT
General-purpose input
TIN116 GTM input
P02.9 O0 General-purpose output
TOUT116 O1 GTM output
ATX2 O2 ASCLIN2 output
O3 Reserved
O4 Reserved
TXDCAN1 O5 CAN node 1 output
O6 Reserved
O7 Reserved
Table 2-21 Port 02 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 81 V 1.0 2017-01
F5 P02.10 I LP /
PU1 /
VEXT
General-purpose input
TIN117 GTM input
ARX2C ASCLIN2 input
RXDCAN1E CAN node 1 input
P02.10 O0 General-purpose output
TOUT117 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
F4 P02.11 I LP /
PU1 /
VEXT
General-purpose input
TIN118 GTM input
P02.11 O0 General-purpose output
TOUT118 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-22 Port 10 Functions
Pin Symbol Ctrl Type Function
A7 P10.0 I LP /
PU1 /
VEXT
General-purpose input
TIN102 GTM input
T6EUDB GPT120 input
P10.0 O0 General-purpose output
TOUT102 O1 GTM output
O2 Reserved
SLSO110 O3 QSPI1 output
O4 Reserved
VADCG6BFL0 O5 VADC output
O6 Reserved
O7 Reserved
Table 2-21 Port 02 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 82 V 1.0 2017-01
B7 P10.1 I MP+ /
PU1 /
VEXT
General-purpose input
TIN103 GTM input
MRST1A QSPI1 input
T5EUDB GPT120 input
P10.1 O0 General-purpose output
TOUT103 O1 GTM output
MTSR1 O2 QSPI1 output
MRST1 O3 QSPI1 output
EN01 O4 MSC0 output
VADCG6BFL1 O5 VADC output
END03 O6 MSC0 output
O7 Reserved
A5 P10.2 I MP /
PU1 /
VEXT
General-purpose input
TIN104 GTM input
SCLK1A QSPI1 input
T6INB GPT120 input
REQ2 SCU input
RXDCAN2E CAN node 2 input
SDI01 MSC0 input
P10.2 O0 General-purpose output
TOUT104 O1 GTM output
O2 Reserved
SCLK1 O3 QSPI1 output
EN00 O4 MSC0 output
VADCG6BFL2 O5 VADC output
END02 O6 MSC0 output
O7 Reserved
Table 2-22 Port 10 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 83 V 1.0 2017-01
A6 P10.3 I MP /
PU1 /
VEXT
General-purpose input
TIN105 GTM input
MTSR1A QSPI1 input
REQ3 SCU input
T5INB GPT120 input
P10.3 O0 General-purpose output
TOUT105 O1 GTM output
VADCG6BFL3 O2 VADC output
MTSR1 O3 QSPI1 output
EN00 O4 MSC0 output
END02 O5 MSC0 output
TXDCAN2 O6 CAN node 2 output
O7 Reserved
B6 P10.4 I MP+ /
PU1 /
VEXT
General-purpose input
TIN106 GTM input
MTSR1C QSPI1 input
CCPOS0C CCU60 input
T3INB GPT120 input
P10.4 O0 General-purpose output
TOUT106 O1 GTM output
O2 Reserved
SLSO18 O3 QSPI1 output
MTSR1 O4 QSPI1 output
EN00 O5 MSC0 output
END02 O6 MSC0 output
O7 Reserved
B5 P10.5 I LP /
PU1 /
VEXT
General-purpose input
TIN107 GTM input
HWCFG4 SCU input
INJ01 MSC0 input
P10.5 O0 General-purpose output
TOUT107 O1 GTM output
ATX2 O2 ASCLIN2 output
SLSO38 O3 QSPI3 output
SLSO19 O4 QSPI1 output
T6OUT O5 GPT120 output
ASLSO2 O6 ASCLIN2 output
- O7 Reserved
Table 2-22 Port 10 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 84 V 1.0 2017-01
A4 P10.6 I LP /
PU1 /
VEXT
General-purpose input
TIN108 GTM input
ARX2D ASCLIN2 input
MTSR3B QSPI3 input
HWCFG5 SCU input
P10.6 O0 General-purpose output
TOUT108 O1 GTM output
ASCLK2 O2 ASCLIN2 output
MTSR3 O3 QSPI3 output
T3OUT O4 GPT120 output
- O5 Reserved
MRST1 O6 QSPI1 output
VADCG7BFL0 O7 VADC output
A3 P10.7 I LP /
PU1 /
VEXT
General-purpose input
TIN109 GTM input
ACTS2A ASCLIN2 input
MRST3B QSPI3 input
REQ4 SCU input
CCPOS1C CCU60 input
T3EUDB GPT120 input
P10.7 O0 General-purpose output
TOUT109 O1 GTM output
O2 Reserved
MRST3 O3 QSPI3 output
VADCG7BFL1 O4 VADC output
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-22 Port 10 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 85 V 1.0 2017-01
B4 P10.8 I LP /
PU1 /
VEXT
General-purpose input
TIN110 GTM input
SCLK3B QSPI3 input
REQ5 SCU input
CCPOS2C CCU60 input
T4INB GPT120 input
P10.8 O0 General-purpose output
TOUT110 O1 GTM output
ARTS2 O2 ASCLIN2 output
SCLK3 O3 QSPI3 output
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-23 Port 11 Functions
Pin Symbol Ctrl Type Function
E10 P11.0 I MP+ /
PU1 /
VFLEX
General-purpose input
TIN119 GTM input
ARX3B ASCLIN3 input
P11.0 O0 General-purpose output
TOUT119 O1 GTM output
ATX3 O2 ASCLIN3 output
O3 Reserved
O4 Reserved
O5 Reserved
ETHTXD3 O6 ETH output
O7 Reserved
E9 P11.1 I MP+ /
PU1 /
VFLEX
General-purpose input
TIN120 GTM input
P11.1 O0 General-purpose output
TOUT120 O1 GTM output
ASCLK3 O2 ASCLIN3 output
ATX3 O3 ASCLIN3 output
O4 Reserved
O5 Reserved
ETHTXD2 O6 ETH output
O7 Reserved
Table 2-22 Port 10 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 86 V 1.0 2017-01
A10 P11.2 I MPR /
PU1 /
VFLEX
General-purpose input
TIN95 GTM input
P11.2 O0 General-purpose output
TOUT95 O1 GTM output
END03 O2 MSC0 output
SLSO05 O3 QSPI0 output
SLSO15 O4 QSPI1 output
EN01 O5 MSC0 output
ETHTXD1 O6 ETH output
COUT63 O7 CCU60 output
B10 P11.3 I MPR /
PU1 /
VFLEX
General-purpose input
TIN96 GTM input
MRST1B QSPI1 input
SDI03 MSC0 input
P11.3 O0 General-purpose output
TOUT96 O1 GTM output
O2 Reserved
MRST1 O3 QSPI1 output
TXDA O4 ERAY output
O5 Reserved
ETHTXD0 O6 ETH output
COUT62 O7 CCU60 output
D10 P11.4 I MP+ /
PU1 /
VFLEX
General-purpose input
TIN121 GTM input
ETHRXCLKB ETH input
P11.4 O0 General-purpose output
TOUT121 O1 GTM output
ASCLK3 O2 ASCLIN3 output
O3 Reserved
O4 Reserved
O5 Reserved
ETHTXER O6 ETH output
O7 Reserved
Table 2-23 Port 11 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 87 V 1.0 2017-01
D8 P11.5 I LP /
PU1 /
VFLEX
General-purpose input
TIN122 GTM input
ETHTXCLKA ETH input
P11.5 O0 General-purpose output
TOUT122 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
D9 P11.6 I MPR /
PU1 /
VFLEX
General-purpose input
TIN97 GTM input
SCLK1B QSPI1 input
P11.6 O0 General-purpose output
TOUT97 O1 GTM output
TXENB O2 ERAY output
SCLK1 O3 QSPI1 output
TXENA O4 ERAY output
FCLP0 O5 MSC0 output
ETHTXEN O6 ETH output
COUT61 O7 CCU60 output
E8 P11.7 I LP /
PU1 /
VFLEX
General-purpose input
TIN123 GTM input
ETHRXD3 ETH input
P11.7 O0 General-purpose output
TOUT123 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-23 Port 11 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 88 V 1.0 2017-01
E7 P11.8 I LP /
PU1 /
VFLEX
General-purpose input
TIN124 GTM input
ETHRXD2 ETH input
P11.8 O0 General-purpose output
TOUT124 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
A9 P11.9 I MP+ /
PU1 /
VFLEX
General-purpose input
TIN98 GTM input
MTSR1B QSPI1 input
RXDA1 ERAY input
ETHRXD1 ETH input
P11.9 O0 General-purpose output
TOUT98 O1 GTM output
O2 Reserved
MTSR1 O3 QSPI1 output
O4 Reserved
SOP0 O5 MSC0 output
O6 Reserved
COUT60 O7 CCU60 output
Table 2-23 Port 11 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 89 V 1.0 2017-01
B9 P11.10 I LP /
PU1 /
VFLEX
General-purpose input
TIN99 GTM input
REQ12 SCU input
ARX1E ASCLIN1 input
SLSI1A QSPI1 input
RXDCAN3D CAN node 3 input
RXDB1 ERAY input
ETHRXD0 ETH input
SDI00 MSC0 input
P11.10 O0 General-purpose output
TOUT99 O1 GTM output
O2 Reserved
SLSO03 O3 QSPI0 output
SLSO13 O4 QSPI1 output
O5 Reserved
O6 Reserved
CC62 O7 CCU60 output
A8 P11.11 I MP+ /
PU1 /
VFLEX
General-purpose input
TIN100 GTM input
ETHCRSDVA ETH input
ETHRXDVA ETH input
ETHCRSB ETH input
P11.11 O0 General-purpose output
TOUT100 O1 GTM output
END02 O2 MSC0 output
SLSO04 O3 QSPI0 output
SLSO14 O4 QSPI1 output
EN00 O5 MSC0 output
TXENB O6 ERAY output
CC61 O7 CCU60 output
Table 2-23 Port 11 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 90 V 1.0 2017-01
B8 P11.12 I
O0
MPR /
PU1 /
VFLEX
General-purpose input
TIN101 GTM input
ETHREFCLK ETH input
ETHTXCLKB ETH input
(Not for productive purposes)
P11.12 General-purpose output
TOUT101 O1 GTM output
ATX1 O2 ASCLIN1 output
GTMCLK2 O3 GTM output
TXDB O4 ERAY output
TXDCAN3 O5 CAN node 3 output
EXTCLK1 O6 SCU output
CC60 O7 CCU60 output
E6 P11.13 I LP /
PU1 /
VFLEX
General-purpose input
TIN125 GTM input
ETHRXERA ETH input
P11.13 O0 General-purpose output
TOUT125 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
D7 P11.14 I LP /
PU1 /
VFLEX
General-purpose input
TIN126 GTM input
ETHCRSDVB ETH input
ETHRXDVB ETH input
ETHCRSA ETH input
P11.14 O0 General-purpose output
TOUT126 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-23 Port 11 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 91 V 1.0 2017-01
D6 P11.15 I LP /
PU1 /
VFLEX
General-purpose input
TIN127 GTM input
ETHCOL ETH input
P11.15 O0 General-purpose output
TOUT127 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-24 Port 12 Functions
Pin Symbol Ctrl Type Function
E12 P12.0 I LP /
PU1 /
VFLEX
General-purpose input
TIN128 GTM input
ETHRXCLKC ETH input
RXDCAN0C CAN node 0 input
P12.0 O0 General-purpose output
TOUT128 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
ETHMDC O6 ETH output
O7 Reserved
E11 P12.1 I LP /
PU1 /
VFLEX
General-purpose input
TIN129 GTM input
P12.1 O0 General-purpose output
TOUT129 O1 GTM output
ASLSO3 O2 ASCLIN3 output
O3 Reserved
O4 Reserved
TXDCAN0 O5 CAN node 0 output
O6 Reserved
O7 Reserved
ETHMDIOC HWOU
T
ETH input/output
Table 2-23 Port 11 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 92 V 1.0 2017-01
Table 2-25 Port 13 Functions
Pin Symbol Ctrl Type Function
B12 P13.0 I LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN91 GTM input
P13.0 O0 General-purpose output
TOUT91 O1 GTM output
END03 O2 MSC0 output
SCLK2N O3 QSPI2 output (LVDS)
EN01 O4 MSC0 output
FCLN0 O5 MSC0 output (LVDS)
FCLND0 O6 MSC0 output (LVDS)
O7 Reserved
A12 P13.1 I LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN92 GTM input
SCL0B I2C0 input
P13.1 O0 General-purpose output
TOUT92 O1 GTM output
O2 Reserved
SCLK2P O3 QSPI2 output (LVDS)
O4 Reserved
FCLP0 O5 MSC0 output (LVDS)
SCL0 O6 I2C0 output
O7 Reserved
B11 P13.2 I LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN93 GTM input
CAPINA GPT120 input
SDA0B I2C0 input
P13.2 O0 General-purpose output
TOUT93 O1 GTM output
O2 Reserved
MTSR2N O3 QSPI2 output (LVDS)
FCLP0 O4 MSC0 output
SON0 O5 MSC0 output (LVDS)
SDA0 O6 I2C0 output
SOND0 O7 MSC0 output (LVDS)
@fineon TTTTTTTTT
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 93 V 1.0 2017-01
A11 P13.3 I LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN94 GTM input
P13.3 O0 General-purpose output
TOUT94 O1 GTM output
O2 Reserved
MTSR2P O3 QSPI2 output (LVDS)
O4 Reserved
SOP0 O5 MSC0 output (LVDS)
O6 Reserved
O7 Reserved
Table 2-26 Port 14 Functions
Pin Symbol Ctrl Type Function
B16 P14.0 I MP+ /
PU1 /
VEXT
General-purpose input
TIN80 GTM input
P14.0 O0 General-purpose output
TOUT80 O1 GTM output
ATX0 O2 ASCLIN0 output
Recommended as Boot loader pin.
TXDA O3 ERAY output
TXDB O4 ERAY output
TXDCAN1 O5 CAN node 1 output
Used for single pin DAP (SPD) function.
ASCLK0 O6 ASCLIN0 output
COUT62 O7 CCU60 output
Table 2-25 Port 13 Functions (cont’d)
Pin Symbol Ctrl Type Function
@fineon T R A R R R E T H E
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 94 V 1.0 2017-01
A15 P14.1 I MP /
PU1 /
VEXT
General-purpose input
TIN81 GTM input
REQ15 SCU input
ARX0A ASCLIN0 input
Recommended as Boot loader pin.
RXDCAN1B CAN node 1 input
Used for single pin DAP (SPD) function.
RXDA3 ERAY input
RXDB3 ERAY input
EVRWUPA SCU input
P14.1 O0 General-purpose output
TOUT81 O1 GTM output
ATX0 O2 ASCLIN0 output
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
COUT63 O7 CCU60 output
E13 P14.2 I LP /
PU1 /
VEXT
General-purpose input
TIN82 GTM input
HWCFG2
EVR13
SCU input
Latched at cold power on reset to decide EVR13
activation.
P14.2 O0 General-purpose output
TOUT82 O1 GTM output
ATX2 O2 ASCLIN2 output
SLSO21 O3 QSPI2 output
O4 Reserved
O5 Reserved
ASCLK2 O6 ASCLIN2 output
O7 Reserved
Table 2-26 Port 14 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 95 V 1.0 2017-01
B14 P14.3 I LP /
PU1 /
VEXT
General-purpose input
TIN83 GTM input
ARX2A ASCLIN2 input
REQ10 SCU input
HWCFG3_BMI SCU input
SDI02 MSC0 input
P14.3 O0 General-purpose output
TOUT83 O1 GTM output
ATX2 O2 ASCLIN2 output
SLSO23 O3 QSPI2 output
ASLSO1 O4 ASCLIN1 output
ASLSO3 O5 ASCLIN3 output
O6 Reserved
O7 Reserved
B15 P14.4 I LP /
PU1 /
VEXT
General-purpose input
TIN84 GTM input
HWCFG6 SCU input
Latched at cold power on reset to decide default pad
reset state (PU or HighZ).
P14.4 O0 General-purpose output
TOUT84 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-26 Port 14 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 96 V 1.0 2017-01
A14 P14.5 I MP+ /
PU1 /
VEXT
General-purpose input
TIN85 GTM input
HWCFG1
EVR33
SCU input
Latched at cold power on reset to decide EVR33
activation.
P14.5 O0 General-purpose output
TOUT85 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
TXDB O6 ERAY output
O7 Reserved
B13 P14.6 I MP+ /
PU1 /
VEXT
General-purpose input
TIN86 GTM input
HWCFG0
DCLDO
SCU input
If EVR13 active, latched at cold power on reset to
decide between LDO and SMPS mode.
P14.6 O0 General-purpose output
TOUT86 O1 GTM output
O2 Reserved
SLSO22 O3 QSPI2 output
O4 Reserved
O5 Reserved
TXENB O6 ERAY output
O7 Reserved
D13 P14.7 I LP /
PU1 /
VEXT
General-purpose input
TIN87 GTM input
RXDB0 ERAY input
P14.7 O0 General-purpose output
TOUT87 O1 GTM output
ARTS0 O2 ASCLIN0 output
SLSO24 O3 QSPI2 output
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-26 Port 14 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 97 V 1.0 2017-01
A13 P14.8 I LP /
PU1 /
VEXT
General-purpose input
TIN88 GTM input
ARX1D ASCLIN1 input
RXDCAN2D CAN node 2 input
RXDA0 ERAY input
P14.8 O0 General-purpose output
TOUT88 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
D12 P14.9 I MP+ /
PU1 /
VEXT
General-purpose input
TIN89 GTM input
ACTS0A ASCLIN0 input
P14.9 O0 General-purpose output
TOUT89 O1 GTM output
END03 O2 MSC0 output
EN01 O3 MSC0 output
O4 Reserved
TXENB O5 ERAY output
TXENA O6 ERAY output
O7 Reserved
D11 P14.10 I MP+ /
PU1 /
VEXT
General-purpose input
TIN90 GTM input
P14.10 O0 General-purpose output
TOUT90 O1 GTM output
END02 O2 MSC0 output
EN00 O3 MSC0 output
ATX1 O4 ASCLIN1 output
TXDCAN2 O5 CAN node 2 output
TXDA O6 ERAY output
O7 Reserved
Table 2-26 Port 14 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 98 V 1.0 2017-01
Table 2-27 Port 15 Functions
Pin Symbol Ctrl Type Function
B20 P15.0 I LP /
PU1 /
VEXT
General-purpose input
TIN71 GTM input
P15.0 O0 General-purpose output
TOUT71 O1 GTM output
ATX1 O2 ASCLIN1 output
SLSO013 O3 QSPI0 output
O4 Reserved
TXDCAN2 O5 CAN node 2 output
ASCLK1 O6 ASCLIN1 output
O7 Reserved
A18 P15.1 I LP /
PU1 /
VEXT
General-purpose input
TIN72 GTM input
REQ16 SCU input
ARX1A ASCLIN1 input
RXDCAN2A CAN node 2 input
SLSI2B QSPI2 input
EVRWUPB SCU input
P15.1 O0 General-purpose output
TOUT72 O1 GTM output
ATX1 O2 ASCLIN1 output
SLSO25 O3 QSPI2 output
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
C19 P15.2 I MP /
PU1 /
VEXT
General-purpose input
TIN73 GTM input
SLSI2A QSPI2 input
MRST2E QSPI2 input
P15.2 O0 General-purpose output
TOUT73 O1 GTM output
ATX0 O2 ASCLIN0 output
SLSO20 O3 QSPI2 output
O4 Reserved
TXDCAN1 O5 CAN node 1 output
ASCLK0 O6 ASCLIN0 output
O7 Reserved
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 99 V 1.0 2017-01
B17 P15.3 I MP /
PU1 /
VEXT
General-purpose input
TIN74 GTM input
ARX0B ASCLIN0 input
SCLK2A QSPI2 input
RXDCAN1A CAN node 1 input
P15.3 O0 General-purpose output
TOUT74 O1 GTM output
ATX0 O2 ASCLIN0 output
SCLK2 O3 QSPI2 output
END03 O4 MSC0 output
EN01 O5 MSC0 output
O6 Reserved
O7 Reserved
A17 P15.4 I MP /
PU1 /
VEXT
General-purpose input
TIN75 GTM input
MRST2A QSPI2 input
REQ0 SCU input
SCL0C I2C0 input
P15.4 O0 General-purpose output
TOUT75 O1 GTM output
ATX1 O2 ASCLIN1 output
MRST2 O3 QSPI2 output
O4 Reserved
O5 Reserved
SCL0 O6 I2C0 output
CC62 O7 CCU60 output
Table 2-27 Port 15 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 100 V 1.0 2017-01
E14 P15.5 I MP /
PU1 /
VEXT
General-purpose input
TIN76 GTM input
ARX1B ASCLIN1 input
MTSR2A QSPI2 input
REQ13 SCU input
SDA0C I2C0 input
P15.5 O0 General-purpose output
TOUT76 O1 GTM output
ATX1 O2 ASCLIN1 output
MTSR2 O3 QSPI2 output
END02 O4 MSC0 output
EN00 O5 MSC0 output
SDA0 O6 I2C0 output
CC61 O7 CCU60 output
A16 P15.6 I MP /
PU1 /
VEXT
General-purpose input
TIN77 GTM input
MTSR2B QSPI2 input
P15.6 O0 General-purpose output
TOUT77 O1 GTM output
ATX3 O2 ASCLIN3 output
MTSR2 O3 QSPI2 output
O4 Reserved
SCLK2 O5 QSPI2 output
ASCLK3 O6 ASCLIN3 output
CC60 O7 CCU60 output
D15 P15.7 I MP /
PU1 /
VEXT
General-purpose input
TIN78 GTM input
ARX3A ASCLIN3 input
MRST2B QSPI2 input
P15.7 O0 General-purpose output
TOUT78 O1 GTM output
ATX3 O2 ASCLIN3 output
MRST2 O3 QSPI2 output
O4 Reserved
O5 Reserved
O6 Reserved
COUT60 O7 CCU60 output
Table 2-27 Port 15 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 101 V 1.0 2017-01
D14 P15.8 I MP /
PU1 /
VEXT
General-purpose input
TIN79 GTM input
SCLK2B QSPI2 input
REQ1 SCU input
P15.8 O0 General-purpose output
TOUT79 O1 GTM output
O2 Reserved
SCLK2 O3 QSPI2 output
O4 Reserved
O5 Reserved
ASCLK3 O6 ASCLIN3 output
COUT61 O7 CCU60 output
Table 2-28 Port 20 Functions
Pin Symbol Ctrl Type Function
H20 P20.0 I MP /
PU1 /
VEXT
General-purpose input
TIN59 GTM input
RXDCAN3C CAN node 3 input
T6EUDA GPT120 input
REQ9 SCU input
SYSCLK HSCT input
TGI0 OCDS input
P20.0 O0 General-purpose output
TOUT59 O1 GTM output
ATX3 O2 ASCLIN3 output
ASCLK3 O3 ASCLIN3 output
O4 Reserved
SYSCLK O5 HSCT output
O6 Reserved
O7 Reserved
TGO0 HWOU
T
OCDS; ENx
Table 2-27 Port 15 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 102 V 1.0 2017-01
G19 P20.1 I LP /
PU1 /
VEXT
General-purpose input
TIN60 GTM input
TGI1 OCDS input
P20.1 O0 General-purpose output
TOUT60 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
TGO1 HWOU
T
OCDS; ENx
H19 P20.2 I LP /
PU /
VEXT
General-purpose input
This pin is latched at power on reset release to enter
test mode.
TESTMODE OCDS input
P20.2 O0 Output function not available
O1 Output function not available
O2 Output function not available
O3 Output function not available
O4 Output function not available
O5 Output function not available
O6 Output function not available
O7 Output function not available
G20 P20.3 I LP /
PU1 /
VEXT
General-purpose input
TIN61 GTM input
T6INA GPT120 input
ARX3C ASCLIN3 input
P20.3 O0 General-purpose output
TOUT61 O1 GTM output
ATX3 O2 ASCLIN3 output
SLSO09 O3 QSPI0 output
SLSO29 O4 QSPI2 output
TXDCAN3 O5 CAN node 3 output
O6 Reserved
O7 Reserved
Table 2-28 Port 20 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 103 V 1.0 2017-01
F17 P20.6 I LP /
PU1 /
VEXT
General-purpose input
TIN62 GTM input
P20.6 O0 General-purpose output
TOUT62 O1 GTM output
ARTS1 O2 ASCLIN1 output
SLSO08 O3 QSPI0 output
SLSO28 O4 QSPI2 output
O5 Reserved
WDT2LCK O6 SCU output
O7 Reserved
F19 P20.7 I LP /
PU1 /
VEXT
General-purpose input
TIN63 GTM input
ACTS1A ASCLIN1 input
RXDCAN0B CAN node 0 input
P20.7 O0 General-purpose output
TOUT63 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
WDT1LCK O6 SCU output
COUT63 O7 CCU61 output
F20 P20.8 I MP /
PU1 /
VEXT
General-purpose input
TIN64 GTM input
P20.8 O0 General-purpose output
TOUT64 O1 GTM output
ASLSO1 O2 ASCLIN1 output
SLSO00 O3 QSPI0 output
SLSO10 O4 QSPI1 output
TXDCAN0 O5 CAN node 0 output
WDT0LCK O6 SCU output
CC60 O7 CCU61 output
Table 2-28 Port 20 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 104 V 1.0 2017-01
E17 P20.9 I LP /
PU1 /
VEXT
General-purpose input
TIN65 GTM input
ARX1C ASCLIN1 input
RXDCAN3E CAN node 3 input
REQ11 SCU input
SLSI0B QSPI0 input
P20.9 O0 General-purpose output
TOUT65 O1 GTM output
O2 Reserved
SLSO01 O3 QSPI0 output
SLSO11 O4 QSPI1 output
O5 Reserved
WDTSLCK O6 SCU output
CC61 O7 CCU61 output
E19 P20.10 I MP /
PU1 /
VEXT
General-purpose input
TIN66 GTM input
P20.10 O0 General-purpose output
TOUT66 O1 GTM output
ATX1 O2 ASCLIN1 output
SLSO06 O3 QSPI0 output
SLSO27 O4 QSPI2 output
TXDCAN3 O5 CAN node 3 output
ASCLK1 O6 ASCLIN1 output
CC62 O7 CCU61 output
E20 P20.11 I MP /
PU1 /
VEXT
General-purpose input
TIN67 GTM input
SCLK0A QSPI0 input
P20.11 O0 General-purpose output
TOUT67 O1 GTM output
O2 Reserved
SCLK0 O3 QSPI0 output
O4 Reserved
O5 Reserved
O6 Reserved
COUT60 O7 CCU61 output
Table 2-28 Port 20 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 105 V 1.0 2017-01
D19 P20.12 I MP /
PU1 /
VEXT
General-purpose input
TIN68 GTM input
MRST0A QSPI0 input
P20.12 O0 General-purpose output
TOUT68 O1 GTM output
O2 Reserved
MRST0 O3 QSPI0 output
MTSR0 O4 QSPI0 output
O5 Reserved
O6 Reserved
COUT61 O7 CCU61 output
D20 P20.13 I MP /
PU1 /
VEXT
General-purpose input
TIN69 GTM input
SLSI0A QSPI0 input
P20.13 O0 General-purpose output
TOUT69 O1 GTM output
O2 Reserved
SLSO02 O3 QSPI0 output
SLSO12 O4 QSPI1 output
SCLK0 O5 QSPI0 output
O6 Reserved
COUT62 O7 CCU61 output
C20 P20.14 I MP /
PU1 /
VEXT
General-purpose input
TIN70 GTM input
MTSR0A QSPI0 input
P20.14 O0 General-purpose output
TOUT70 O1 GTM output
O2 Reserved
MTSR0 O3 QSPI0 output
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-28 Port 20 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon l-4'U I'H-4
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 106 V 1.0 2017-01
Table 2-29 Port 21 Functions
Pin Symbol Ctrl Type Function
K17 P21.0 I A2 /
PU1 /
VDDP3
General-purpose input
TIN51 GTM input
P21.0 O0 General-purpose output
TOUT51 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
ETHMDC O6 ETH output
O7 Reserved
HSM1 HWOU
T
HSM output 1
J17 P21.1 I A2 /
PU1 /
VDDP3
General-purpose input
TIN52 GTM input
ETHMDIOB ETH input
(Not for production purposes)
P21.1 O0 General-purpose output
TOUT52 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
ETHMDIO O6 ETH output
(Not for production purposes)
O7 Reserved
HSM2 HWOU
T
HSM output 2
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 107 V 1.0 2017-01
K19 P21.2 I LVDSH_N/
PU1 /
VDDP3
General-purpose input
TIN53 GTM input
MRST2CN QSPI2 input (LVDS)
MRST3FN QSPI3 input (LVDS)
ARX3GN ASCLIN3 input (LVDS)
EMGSTOPB SCU input
RXDN HSCT input (LVDS)
P21.2 O0 General-purpose output
TOUT53 O1 GTM output
ASLSO3 O2 ASCLIN3 output
O3 Reserved
O4 Reserved
ETHMDC O5 ETH output
O6 Reserved
O7 Reserved
J19 P21.3 I LVDSH_P/
PU1 /
VDDP3
General-purpose input
TIN54 GTM input
MRST2CP QSPI2 input (LVDS)
MRST3FP QSPI3 input (LVDS)
ARX3GP ASCLIN3 input (LVDS)
RXDP HSCT input (LVDS)
P21.3 O0 General-purpose output
TOUT54 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
ETHMDIOD HWOU
T
ETH input/output
Table 2-29 Port 21 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 108 V 1.0 2017-01
K20 P21.4 I LVDSH_N/
PU1 /
VDDP3
General-purpose input
TIN55 GTM input
P21.4 O0 General-purpose output
TOUT55 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
TXDN HSCT HSCT output (LVDS)
J20 P21.5 I LVDSH_P/
PU1 /
VDDP3
General-purpose input
TIN56 GTM input
P21.5 O0 General-purpose output
TOUT56 O1 GTM output
ASCLK3 O2 ASCLIN3 output
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
TXDP HSCT HSCT output (LVDS)
H17 P21.6 I A2 /
PU /
VDDP3
General-purpose input
TIN57 GTM input
ARX3F ASCLIN3 input
TGI2 OCDS input
TDI OCDS (JTAG) input
T5EUDA GPT120 input
P21.6 O0 General-purpose output
TOUT57 O1 GTM output
ASLSO3 O2 ASCLIN3 output
O3 Reserved
O4 Reserved
SYSCLK O5 HSCT output
O6 Reserved
T3OUT O7 GPT120 output
TGO2 HWOU
T
OCDS; ENx
Table 2-29 Port 21 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon —<><>< |="">>-4'U-4m TGOS
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 109 V 1.0 2017-01
H16 P21.7 I A2 /
PU /
VDDP3
General-purpose input
TIN58 GTM input
DAP2 OCDS input
TGI3 OCDS input
TDO OCDS (JTAG) input
The JTAG TDO function is overlayed with P21.7
via a double bond.
In JTAG mode this pin is used as TDO, after
power-on reset it is HighZ. In DAP mode this pin
is used as P21.7 and controlled by the related
port control logic
ETHRXERB ETH input
T5INA GPT120 input
P21.7 O0 General-purpose output
TOUT58 O1 GTM output
ATX3 O2 ASCLIN3 output
ASCLK3 O3 ASCLIN3 output
O4 Reserved
O5 Reserved
O6 Reserved
T6OUT O7 GPT120 output
TGO3 HWOU
T
OCDS; ENx
TDO OCDS (JTAG); ENx
The JTAG TDO function is overlayed with P21.7
via a double bond.
In JTAG mode this pin is used as TDO, after
power-on reset it is HighZ. In DAP mode this pin
is used as P21.7 and controlled by the related
port control logic
Table 2-29 Port 21 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 110 V 1.0 2017-01
Table 2-30 Port 22 Functions
Pin Symbol Ctrl Type Function
P20 P22.0 I LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN47 GTM input
MTSR3E QSPI3 input
P22.0 O0 General-purpose output
TOUT47 O1 GTM output
ATX3N O2 ASCLIN3 output (LVDS)
MTSR3 O3 QSPI3 output
SCLK3N O4 QSPI3 output (LVDS)
FCLN1 O5 MSC1 output (LVDS)
FCLND1 O6 MSC1 output (LVDS)
O7 Reserved
P19 P22.1 I LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN48 GTM input
MRST3E QSPI3 input
P22.1 O0 General-purpose output
TOUT48 O1 GTM output
ATX3P O2 ASCLIN3 output (LVDS)
MRST3 O3 QSPI3 output
SCLK3P O4 QSPI3 output (LVDS)
FCLP1 O5 MSC1 output (LVDS)
O6 Reserved
O7 Reserved
R20 P22.2 I LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN49 GTM input
SLSI3D QSPI3 input
P22.2 O0 General-purpose output
TOUT49 O1 GTM output
O2 Reserved
SLSO312 O3 QSPI3 output
MTSR3N O4 QSPI3 output (LVDS)
SON1 O5 MSC1 output (LVDS)
SOND1 O6 MSC1 output (LVDS)
O7 Reserved
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 111 V 1.0 2017-01
R19 P22.3 I LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN50 GTM input
SCLK3E QSPI3 input
P22.3 O0 General-purpose output
TOUT50 O1 GTM output
O2 Reserved
SCLK3 O3 QSPI3 output
MTSR3P O4 QSPI3 output (LVDS)
SOP1 O5 MSC1 output (LVDS)
O6 Reserved
O7 Reserved
P16 P22.4 I LP /
PU1 /
VEXT
General-purpose input
TIN130 GTM input
P22.4 O0 General-purpose output
TOUT130 O1 GTM output
O2 Reserved
O3 Reserved
SLSO012 O4 QSPI0 output
O5 Reserved
O6 Reserved
O7 Reserved
P17 P22.5 I LP /
PU1 /
VEXT
General-purpose input
TIN131 GTM input
MTSR0C QSPI0 input
P22.5 O0 General-purpose output
TOUT131 O1 GTM output
O2 Reserved
O3 Reserved
MTSR0 O4 QSPI0 output
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-30 Port 22 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 112 V 1.0 2017-01
N16 P22.6 I LP /
PU1 /
VEXT
General-purpose input
TIN132 GTM input
MRST0C QSPI0 input
P22.6 O0 General-purpose output
TOUT132 O1 GTM output
O2 Reserved
O3 Reserved
MRST0 O4 QSPI0 output
O5 Reserved
O6 Reserved
O7 Reserved
N17 P22.7 I LP /
PU1 /
VEXT
General-purpose input
TIN133 GTM input
SCLK0C QSPI0 input
P22.7 O0 General-purpose output
TOUT133 O1 GTM output
O2 Reserved
O3 Reserved
SCLK0 O4 QSPI0 output
O5 Reserved
O6 Reserved
O7 Reserved
M16 P22.8 I LP /
PU1 /
VEXT
General-purpose input
TIN134 GTM input
SCLK0B QSPI0 input
P22.8 O0 General-purpose output
TOUT134 O1 GTM output
O2 Reserved
O3 Reserved
SCLK0 O4 QSPI0 output
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-30 Port 22 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 113 V 1.0 2017-01
M17 P22.9 I LP /
PU1 /
VEXT
General-purpose input
TIN135 GTM input
MRST0B QSPI0 input
P22.9 O0 General-purpose output
TOUT135 O1 GTM output
O2 Reserved
O3 Reserved
MRST0 O4 QSPI0 output
O5 Reserved
O6 Reserved
O7 Reserved
L16 P22.10 I LP /
PU1 /
VEXT
General-purpose input
TIN136 GTM input
MTSR0B QSPI0 input
P22.10 O0 General-purpose output
TOUT136 O1 GTM output
O2 Reserved
O3 Reserved
MTSR0 O4 QSPI0 output
O5 Reserved
O6 Reserved
O7 Reserved
L17 P22.11 I LP /
PU1 /
VEXT
General-purpose input
TIN137 GTM input
P22.11 O0 General-purpose output
TOUT137 O1 GTM output
O2 Reserved
O3 Reserved
SLSO010 O4 QSPI0 output
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-30 Port 22 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 114 V 1.0 2017-01
Table 2-31 Port 23 Functions
Pin Symbol Ctrl Type Function
V20 P23.0 I LP /
PU1 /
VEXT
General-purpose input
TIN41 GTM input
P23.0 O0 General-purpose output
TOUT41 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
U19 P23.1 I MP+ /
PU1 /
VEXT
General-purpose input
TIN42 GTM input
SDI10 MSC1 input
P23.1 O0 General-purpose output
TOUT42 O1 GTM output
ARTS1 O2 ASCLIN1 output
SLSO313 O3 QSPI3 output
GTMCLK0 O4 GTM output
O5 Reserved
EXTCLK0 O6 SCU output
O7 Reserved
U20 P23.2 I LP /
PU1 /
VEXT
General-purpose input
TIN43 GTM input
P23.2 O0 General-purpose output
TOUT43 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 115 V 1.0 2017-01
T19 P23.3 I LP /
PU1 /
VEXT
General-purpose input
TIN44 GTM input
INJ10 MSC1 input
P23.3 O0 General-purpose output
TOUT44 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
T20 P23.4 I MP+ /
PU1 /
VEXT
General-purpose input
TIN45 GTM input
P23.4 O0 General-purpose output
TOUT45 O1 GTM output
O2 Reserved
SLSO35 O3 QSPI3 output
END12 O4 MSC1 output
EN10 O5 MSC1 output
O6 Reserved
O7 Reserved
T17 P23.5 I MP+ /
PU1 /
VEXT
General-purpose input
TIN46 GTM input
P23.5 O0 General-purpose output
TOUT46 O1 GTM output
O2 Reserved
SLSO34 O3 QSPI3 output
END13 O4 MSC1 output
EN11 O5 MSC1 output
O6 Reserved
O7 Reserved
Table 2-31 Port 23 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 116 V 1.0 2017-01
R17 P23.6 I LP /
PU1 /
VEXT
General-purpose input
TIN138 GTM input
P23.6 O0 General-purpose output
TOUT138 O1 GTM output
O2 Reserved
O3 Reserved
SLSO011 O4 QSPI0 output
O5 Reserved
O6 Reserved
O7 Reserved
R16 P23.7 I LP /
PU1 /
VEXT
General-purpose input
TIN139 GTM input
P23.7 O0 General-purpose output
TOUT139 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-32 Port 32 Functions
Pin Symbol Ctrl Type Function
Y17 P32.0 I LP /
EVR13 SMPS
-> PD,
GPIO - > PU
/
VEXT
General-purpose input
TIN36 GTM input
FDEST PMU input
VGATE1N SMPS mode: analog output. External Pass Device
gate control for EVR13
P32.0 O0 General-purpose output
TOUT36 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
Table 2-31 Port 23 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 117 V 1.0 2017-01
Y18 P32.2 I LP /
PU1 /
VEXT
General-purpose input
TIN38 GTM input
ARX3D ASCLIN3 input
RXDCAN3B CAN node 3 input
P32.2 O0 General-purpose output
TOUT38 O1 GTM output
ATX3 O2 ASCLIN3 output
O3 Reserved
O4 Reserved
O5 Reserved
DCDCSYNC O6 SCU output
O7 Reserved
Y19 P32.3 I LP /
PU1 /
VEXT
General-purpose input
TIN39 GTM input
P32.3 O0 General-purpose output
TOUT39 O1 GTM output
ATX3 O2 ASCLIN3 output
O3 Reserved
ASCLK3 O4 ASCLIN3 output
TXDCAN3 O5 CAN node 3 output
O6 Reserved
O7 Reserved
W18 P32.4 I MP+ /
PU1 /
VEXT
General-purpose input
TIN40 GTM input
ACTS1B ASCLIN1 input
SDI12 MSC1 input
P32.4 O0 General-purpose output
TOUT40 O1 GTM output
O2 Reserved
END12 O3 MSC1 output
GTMCLK1 O4 GTM output
EN10 O5 MSC1 output
EXTCLK1 O6 SCU output
COUT63 O7 CCU60 output
Table 2-32 Port 32 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 118 V 1.0 2017-01
T15 P32.5 I LP /
PU1 /
VEXT
General-purpose input
TIN140 GTM input
P32.5 O0 General-purpose output
TOUT140 O1 GTM output
ATX2 O2 ASCLIN2 output
O3 Reserved
O4 Reserved
O5 Reserved
TXDCAN2 O6 CAN node 2 output
O7 Reserved
U15 P32.6 I LP /
PU1 /
VEXT
General-purpose input
TGI4 OCDS input
TIN141 GTM input
RXDCAN2C CAN node 2 input
ARX2F ASCLIN2 input
P32.6 O0 General-purpose output
TOUT141 O1 GTM output
O2 Reserved
O3 Reserved
SLSO212 O4 QSPI2 output
O5 Reserved
O6 Reserved
O7 Reserved
TGO4 HWOU
T
OCDS; ENx
U16 P32.7 I LP /
PU1 /
VEXT
General-purpose input
TIN142 GTM input
TGI5 OCDS input
P32.7 O0 General-purpose output
TOUT142 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
O7 Reserved
TGO5 HWOU
T
OCDS; ENx
Table 2-32 Port 32 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 119 V 1.0 2017-01
Table 2-33 Port 33 Functions
Pin Symbol Ctrl Type Function
W10 P33.0 I LP /
PU1 /
VEXT
General-purpose input
TIN22 GTM input
DSITR0E DSADC channel 0 input E
P33.0 O0 General-purpose output
TOUT22 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
VADCG2BFL0 O6 VADC output
O7 Reserved
Y10 P33.1 I LP /
PU1 /
VEXT
General-purpose input
TIN23 GTM input
PSIRX0C PSI5 input
SENT9C SENT input
DSCIN2B DSADC channel 2 input B
DSITR1E DSADC channel 1 input E
P33.1 O0 General-purpose output
TOUT23 O1 GTM output
ASLSO3 O2 ASCLIN3 output
O3 Reserved
DSCOUT2 O4 DSADC channel 2 output
VADCEMUX02 O5 VADC output
VADCG2BFL1 O6 VADC output
O7 Reserved
W11 P33.2 I LP /
PU1 /
VEXT
General-purpose input
TIN24 GTM input
SENT8C SENT input
DSDIN2B DSADC channel 2 input B
DSITR2E DSADC channel 2 input E
P33.2 O0 General-purpose output
TOUT24 O1 GTM output
ASCLK3 O2 ASCLIN3 output
O3 Reserved
PSITX0 O4 PSI5 output
VADCEMUX01 O5 VADC output
VADCG2BFL2 O6 VADC output
O7 Reserved
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 120 V 1.0 2017-01
Y11 P33.3 I LP /
PU1 /
VEXT
General-purpose input
TIN25 GTM input
PSIRX1C PSI5 input
SENT7C SENT input
DSCIN1B DSADC channel 1 input B
P33.3 O0 General-purpose output
TOUT25 O1 GTM output
O2 Reserved
O3 Reserved
DSCOUT1 O4 DSADC channel 1 output
VADCEMUX00 O5 VADC output
VADCG2BFL3 O6 VADC output
O7 Reserved
W12 P33.4 I LP /
PU1 /
VEXT
General-purpose input
TIN26 GTM input
SENT6C SENT input
CTRAPC CCU61 input
DSDIN1B DSADC channel 1 input B
DSITR0F DSADC channel 0 input F
P33.4 O0 General-purpose output
TOUT26 O1 GTM output
ARTS2 O2 ASCLIN2 output
O3 Reserved
PSITX1 O4 PSI5 output
VADCEMUX12 O5 VADC output
VADCG0BFL0 O6 VADC output
O7 Reserved
Table 2-33 Port 33 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 121 V 1.0 2017-01
Y12 P33.5 I LP /
PU1 /
VEXT
General-purpose input
TIN27 GTM input
ACTS2B ASCLIN2 input
PSIRX2C PSI5 input
PSISRXC PSI5-S input
SENT5C SENT input
CCPOS2C CCU61 input
T4EUDB GPT120 input
DSCIN0B DSADC channel 0 input B
DSITR1F DSADC channel 1 input F
P33.5 O0 General-purpose output
TOUT27 O1 GTM output
SLSO07 O2 QSPI0 output
SLSO17 O3 QSPI1 output
DSCOUT0 O4 DSADC channel 0 output
VADCEMUX11 O5 VADC output
VADCG0BFL1 O6 VADC output
O7 Reserved
W13 P33.6 I LP /
PU1 /
VEXT
General-purpose input
TIN28 GTM input
SENT4C SENT input
CCPOS1C CCU61 input
T2EUDB GPT120 input
DSDIN0B DSADC channel 0 input B
DSITR2F DSADC channel 2 input F
P33.6 O0 General-purpose output
TOUT28 O1 GTM output
ASLSO2 O2 ASCLIN2 output
- O3 Reserved
PSITX2 O4 PSI5 output
VADCEMUX10 O5 VADC output
VADCG1BFL0 O6 VADC output
PSISTX O7 PSI5-S output
Table 2-33 Port 33 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 122 V 1.0 2017-01
Y13 P33.7 I LP /
PU1 /
VEXT
General-purpose input
TIN29 GTM input
RXDCAN0E CAN node 0 input
REQ8 SCU input
CCPOS0C CCU61 input
T2INB GPT120 input
P33.7 O0 General-purpose output
TOUT29 O1 GTM output
ASCLK2 O2 ASCLIN2 output
SLSO37 O3 QSPI3 output
O4 Reserved
O5 Reserved
VADCG1BFL1 O6 VADC output
O7 Reserved
W14 P33.8 I MP /
HighZ/
VEXT
General-purpose input
TIN30 GTM input
ARX2E ASCLIN2 input
EMGSTOPA SCU input
P33.8 O0 General-purpose output
TOUT30 O1 GTM output
ATX2 O2 ASCLIN2 output
SLSO32 O3 QSPI3 output
O4 Reserved
TXDCAN0 O5 CAN node 0 output
O6 Reserved
COUT62 O7 CCU61 output
SMUFSP HWOU
T
SMU
Y14 P33.9 I LP /
PU1 /
VEXT
General-purpose input
TIN31 GTM input
P33.9 O0 General-purpose output
TOUT31 O1 GTM output
ATX2 O2 ASCLIN2 output
SLSO31 O3 QSPI3 output
ASCLK2 O4 ASCLIN2 output
O5 Reserved
O6 Reserved
CC62 O7 CCU61 output
Table 2-33 Port 33 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 123 V 1.0 2017-01
W15 P33.10 I MP /
PU1 /
VEXT
General-purpose input
TIN32 GTM input
SLSI3C QSPI3 input
P33.10 O0 General-purpose output
TOUT32 O1 GTM output
SLSO16 O2 QSPI1 output
SLSO311 O3 QSPI3 output
ASLSO1 O4 ASCLIN1 output
PSISCLK O5 PSI5-S output
O6 Reserved
COUT61 O7 CCU61 output
Y15 P33.11 I MP /
PU1 /
VEXT
General-purpose input
TIN33 GTM input
SCLK3D QSPI3 input
P33.11 O0 General-purpose output
TOUT33 O1 GTM output
ASCLK1 O2 ASCLIN1 output
SCLK3 O3 QSPI3 output
O4 Reserved
O5 Reserved
DSCGPWMN O6 DSADC output
CC61 O7 CCU61 output
W16 P33.12 I MP /
PU1 /
VEXT
General-purpose input
TIN34 GTM input
MTSR3D QSPI3 input
P33.12 O0 General-purpose output
TOUT34 O1 GTM output
ATX1 O2 ASCLIN1 output
MTSR3 O3 QSPI3 output
ASCLK1 O4 ASCLIN1 output
O5 Reserved
DSCGPWMP O6 DSADC output
COUT60 O7 CCU61 output
Table 2-33 Port 33 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 124 V 1.0 2017-01
Y16 P33.13 I MP /
PU1 /
VEXT
General-purpose input
TIN35 GTM input
ARX1F ASCLIN1 input
MRST3D QSPI3 input
DSSGNB DSADC input
INJ11 MSC1 input
P33.13 O0 General-purpose output
TOUT35 O1 GTM output
ATX1 O2 ASCLIN1 output
MRST3 O3 QSPI3 output
SLSO26 O4 QSPI2 output
O5 Reserved
DCDCSYNC O6 SCU output
CC60 O7 CCU61 output
T14 P33.14 I LP /
PU1 /
VEXT
General-purpose input
TIN143 GTM input
TGI6 OCDS input
SCLK2D QSPI2 input
P33.14 O0 General-purpose output
TOUT143 O1 GTM output
O2 Reserved
SCLK2 O3 QSPI2 output
O4 Reserved
O5 Reserved
O6 Reserved
CC62 O7 CCU60 output
TGO6 HWOU
T
OCDS; ENx
Table 2-33 Port 33 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 125 V 1.0 2017-01
U14 P33.15 I LP /
PU1 /
VEXT
General-purpose input
TIN144 GTM input
TGI7 OCDS input
P33.15 O0 General-purpose output
TOUT144 O1 GTM output
O2 Reserved
SLSO211 O3 QSPI2 output
O4 Reserved
O5 Reserved
O6 Reserved
COUT62 O7 CCU60 output
TGO7 HWOU
T
OCDS; ENx
Table 2-34 Port 34 Functions
Pin Symbol Ctrl Type Function
U11 P34.1 I LP /
PU1 /
VEXT
General-purpose input
TIN146 GTM input
P34.1 O0 General-purpose output
TOUT146 O1 GTM output
ATX0 O2 ASCLIN0 output
O3 Reserved
TXDCAN0 O4 CAN node 0 output
O5 Reserved
O6 Reserved
COUT63 O7 CCU60 output
T12 P34.2 I LP /
PU1 /
VEXT
General-purpose input
TIN147 GTM input
ARX0D ASCLIN0 input
RXDCAN0G CAN node 0 input
P34.2 O0 General-purpose output
TOUT147 O1 GTM output
O2 Reserved
O3 Reserved
O4 Reserved
O5 Reserved
O6 Reserved
CC60 O7 CCU60 output
Table 2-33 Port 33 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 126 V 1.0 2017-01
U12 P34.3 I LP /
PU1 /
VEXT
General-purpose input
TIN148 GTM input
P34.3 O0 General-purpose output
TOUT148 O1 GTM output
O2 Reserved
O3 Reserved
SLSO210 O4 QSPI2 output
O5 Reserved
O6 Reserved
COUT60 O7 CCU60 output
T13 P34.4 I LP /
PU1 /
VEXT
General-purpose input
TIN149 GTM input
MRST2D QSPI2 input
P34.4 O0 General-purpose output
TOUT149 O1 GTM output
O2 Reserved
O3 Reserved
MRST2 O4 QSPI2 output
O5 Reserved
O6 Reserved
CC61 O7 CCU60 output
U13 P34.5 I LP /
PU1 /
VEXT
General-purpose input
TIN150 GTM input
MTSR2D QSPI2 input
P34.5 O0 General-purpose output
TOUT150 O1 GTM output
O2 Reserved
O3 Reserved
MTSR2 O4 QSPI2 output
O5 Reserved
O6 Reserved
COUT61 O7 CCU60 output
Table 2-34 Port 34 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 127 V 1.0 2017-01
Table 2-35 Port 40 Functions
Pin Symbol Ctrl Type Function
W2 P40.0 I S /
HighZ /
VDDM
General-purpose input
VADCG3.0 VADC analog input channel 0 of group 3
DS2PB DSADC: positive analog input channe of DSADC 2, pin
B
CCPOS0D CCU60 input
SENT0A SENT input
W1 P40.1 I S /
HighZ /
VDDM
General-purpose inpu.t
VADCG3.1 VADC analog input channel 1 of group 3 (MD)
DS2NB DSADC: negative analog of input channel 2, pin B
CCPOS1B CCU60 input
SENT1A SENT input
V2 P40.2 I S /
HighZ /
VDDM
General-purpose inpu.t
VADCG3.2 VADC analog input channel 2 of group 3 (MD)
CCPOS1D CCU60 input
SENT2A SENT input
V1 P40.3 I S /
HighZ /
VDDM
General-purpose input
VADCG3.3 VADC analog input channel 3 of group 3 (with pull
down diagnostics)
CCPOS2B CCU60 input
SENT3A SENT input
P4 P40.4 I S /
HighZ /
VDDM
General-purpose input
VADCG4.0 VADC analog input channel 0 of group 4
CCPOS2D CCU60 input
SENT4A SENT input
R1 P40.5 I S /
HighZ /
VDDM
General-purpose input
VADCG4.1 VADC analog input channel 1 of group 4 (MD)
CCPOS0D CCU61 input
SENT5A SENT input
N4 P40.6 I S /
HighZ /
VDDM
General-purpose input
VADCG4.4 VADC analog input channel 4 of group 4
DS3PA DSADC: positive analog input of channel 3, pin A
CCPOS1B CCU61 input
SENT6A SENT input
P2 P40.7 I S /
HighZ /
VDDM
General-purpose input
VADCG4.5 VADC analog input channel 5 of group 4
DS3NA DSADC: negative analog input of channel 3, pin A
CCPOS1D CCU61 input
SENT7A SENT input
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 128 V 1.0 2017-01
N5 P40.8 I S /
HighZ /
VDDM
General-purpose input
VADCG4.6 VADC analog input channel 6 of group 4
DS3PB DSADC: positive analog input of channel 3, pin B
CCPOS2B CCU61 input
SENT8A SENT input
P1 P40.9 I S /
HighZ /
VDDM
General-purpose input
VADCG4.7 VADC analog input channel 7 of group 4
DS3NB DSADC: negative analog input of channel 3, pin B
CCPOS2D CCU61 input
SENT9A SENT input
Table 2-36 Analog Inputs
Pin Symbol Ctrl Type Function
T10 AN0 I D /
HighZ /
VDDM
Analog input 0
VADCG0.0 VADC analog input channel 0 of group 0
DS1PA DSADC: positive analog of input channel 1, pin A
U10 AN1 I D /
HighZ /
VDDM
Analog input 1
VADCG0.1 VADC analog input channel 1 of group 0 (MD)
DS1NA DSADC: negative analog input of channel 1, pin A
W9 AN2 I D /
HighZ /
VDDM
Analog input 2
VADCG0.2 VADC analog input channel 2 of group 0 (MD)
DS0PA DSADC: positive analog input of channel 0, pin A
U9 AN3 I D /
HighZ /
VDDM
Analog input 3
VADCG0.3 VADC analog input channel 3 of group 0
DS0NA DSADC: negative analog input of channel 0, pin A
T9 AN4 I D /
HighZ /
VDDM
Analog input 4
VADCG0.4 VADC analog input channel 4 of group 0
Y9 AN5 I D /
HighZ /
VDDM
Analog input 5
VADCG0.5 VADC analog input channel 5 of group 0
T8 AN6 I D /
HighZ /
VDDM
Analog input 6
VADCG0.6 VADC analog input channel 6 of group 0
U8 AN7 I D /
HighZ /
VDDM
Analog input 7
VADCG0.7 VADC analog input channel 7 of group 0 (with pull
down diagnostics)
W8 AN8 I D /
HighZ /
VDDM
Analog input 8
VADCG1.0 VADC analog input channel 0 of group 1
Table 2-35 Port 40 Functions (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 129 V 1.0 2017-01
U7 AN9 I D /
HighZ /
VDDM
Analog input 9
VADCG1.1 VADC analog input channel 1 of group 1 (MD)
Y8 AN10 I D /
HighZ /
VDDM
Analog input 10
VADCG1.2 VADC analog input channel 2 of group 1 (MD)
W7 AN11 I D /
HighZ /
VDDM
Analog input 11
VADCG1.3 VADC analog input channel 3 of group 1 (with pull
down diagnostics)
T7 AN12 I D /
HighZ /
VDDM
Analog input 12
VADCG1.4 VADC analog input channel 4 of group 1
W6 AN13 I D /
HighZ /
VDDM
Analog input 13
VADCG1.5 VADC analog input channel 5 of group 1
U6 AN14 I D /
HighZ /
VDDM
Analog input 14
VADCG1.6 VADC analog input channel 6 of group 1
T6 AN15 I D /
HighZ /
VDDM
Analog input 15
VADCG1.7 VADC analog input channel 7 of group 1
W5 AN16 I D /
HighZ /
VDDM
Analog input 16
VADCG2.0 VADC analog input channel 0 of group 2
U5 AN17 I D /
HighZ /
VDDM
Analog input 17
VADCG2.1 VADC analog input channel 1 of group 2 (MD)
W4 AN18 I D /
HighZ /
VDDM
Analog input 18
VADCG2.2 VADC analog input channel 2 of group 2 (MD)
W3 AN19 I D /
HighZ /
VDDM
Analog input 19
VADCG2.3 VADC analog input channel 3 of group 2 (with pull
down diagnostics)
Y3 AN20 I D /
HighZ /
VDDM
Analog input 20
VADCG2.4 I VADC analog input channel 4 of group 2
DS2PA I DSADC: positive analog input of channel 2, pin A
Y2 AN21 I D /
HighZ /
VDDM
Analog input 21
VADCG2.5 I VADC analog input channel 5 of group 2
DS2NA I DSADC: negative analog input of channel
of DSADC 2, pin A
T5 AN22 I D /
HighZ /
VDDM
Analog input 22
VADCG2.6 VADC analog input channel 6 of group 2
Table 2-36 Analog Inputs (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 130 V 1.0 2017-01
R5 AN23 I D /
HighZ /
VDDM
Analog input 23
VADCG2.7 VADC analog input channel 7 of group 2
W2 AN24 I S /
HighZ /
VDDM
Analog input 24
VADCG3.0 VADC analog input channel 0 of group 3
DS2PB DSADC: positive analog input of channel 2, pin B
SENT0A SENT input channel 0, pin A
W1 AN25 I S /
HighZ /
VDDM
Analog input 24
VADCG3.1 VADC analog input channel 1 of group 3 (MD)
DS2NB DSADC: negative analog input of channel 2, pin B
SENT1A SENT input channel 1, pin A
V2 AN26 I S /
HighZ /
VDDM
Analog input 26
VADCG3.2 VADC analog input channel 2 of group 3 (MD)
SENT2A SENT input channel 2, pin A
V1 AN27 I S /
HighZ /
VDDM
Analog input 27
VADCG3.3 VADC analog input channel 3 of group 3 (with pull
down diagnostics)
SENT3A SENT input channel 3, pin A
U2 AN28 I D /
HighZ /
VDDM
Analog input 28
VADCG3.4 VADC analog input channel 4 of group 3
U1 AN29 I D /
HighZ /
VDDM
Analog input 29
VADCG3.5 VADC analog input channel 5 of group 3
T4 AN30 I D /
HighZ /
VDDM
Analog input 30
VADCG3.6 VADC analog input channel 6 of group 3
R4 AN31 I D /
HighZ /
VDDM
Analog input 31
VADCG3.7 VADC analog input channel 7 of group 3
P4 AN32 I S /
HighZ /
VDDM
Analog input 32
VADCG4.0 VADC analog input channel 0 of group 4
SENT4A SENT input channel 4, pin A
R1 AN33 I S /
HighZ /
VDDM
Analog input 33
VADCG4.1 VADC analog input channel 1 of group 4 (MD)
SENT5A SENT input channel 5, pin A
P5 AN34 I D /
HighZ /
VDDM
Analog input 34
VADCG4.2 VADC analog input channel 2 of group 4 (MD)
Table 2-36 Analog Inputs (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 131 V 1.0 2017-01
R2 AN35 I D /
HighZ /
VDDM
Analog input 35
VADCG4.3 VADC analog input channel 3 of group 4 (with pull
down diagnostics)
N4 AN36 I S /
HighZ /
VDDM
Analog input 34
VADCG4.4 VADC analog input channel 4 of group 4
DS3PA DSADC: positive analog input of channel
of DSADC 3, pin A
SENT6A SENT input channel 6, pin A
P2 AN37 I S /
HighZ /
VDDM
Analog input 37
VADCG4.5 VADC analog input channel 5 of group 4
DS3NA DSADC: negative analog input of channel
of DSADC 3, pin A
SENT7A SENT input channel 7, pin A
N5 AN38 I S /
HighZ /
VDDM
Analog input 38
VADCG4.6 VADC analog input channel 6 of group 4
DS3PB DSADC: positive analog input of channel
of DSADC 3, pin B
SENT8A SENT input channel 8, pin A
P1 AN39 I S /
HighZ /
VDDM
Analog input 39
VADCG4.7 VADC analog input channel 7 of group 4
DS3NB DSADC: negative analog input of channel
of DSADC 3, pin B
SENT9A SENT input channel 9, pin A
M5 AN40 I D /
HighZ /
VDDM
Analog input 40
VADCG5.0 VADC analog input channel 0 of group 5
M4 AN41 I D /
HighZ /
VDDM
Analog input 41
VADCG5.1 VADC analog input channel 1 of group 5 (MD)
L5 AN42 I D /
HighZ /
VDDM
Analog input 42
VADCG5.2 VADC analog input channel 2 of group 5 (MD)
L4 AN43 I D /
HighZ /
VDDM
Analog input 43
VADCG5.3 VADC analog input channel 3 of group 5 (with pull
down diagnostics)
N1 AN44 I D /
HighZ /
VDDM
Analog input 44
VADCG5.4 VADC analog input channel 4 of group 5
DS3PC DSADC: positive analog input of channel
of DSADC 3, pin C
Table 2-36 Analog Inputs (cont’d)
Pin Symbol Ctrl Type Function
@neon PORST TRST
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 132 V 1.0 2017-01
N2 AN45 I D /
HighZ /
VDDM
Analog input 45
VADCG5.5 VADC analog input channel 5 of group 5
DS3NC DSADC: negative analog input of channel
of DSADC 3, pin C
M1 AN46 I D /
HighZ /
VDDM
Analog input 46
VADCG5.6 VADC analog input channel 6 of group 5
DS3PD DSADC: positive analog input of channel
of DSADC 3, pin D
M2 AN47 I D /
HighZ /
VDDM
Analog input 47
VADCG5.7 VADC analog input channel 7 of group 5
DS3ND DSADC: negative analog input of channel
of DSADC 3, pin D
Table 2-37 System I/O
Pin Symbol Ctrl Type Function
G17 PORST II /
PD /
VEXT
Power On Reset Input
Additional strong PD in case of power fail.
F16 ESR0 I/O MP /
OD /
VEXT
External System Request Reset 0
Default configuration during and after reset is open-
drain driver. The driver drives low during power-on
reset. This is valid additionally after deactivation of
PORST until the internal reset phase has finished. See
also SCU chapter for details.
Default after power-on can be different. See also SCU
chapter ´Reset Control Unit´ and SCU_IOCR register
description.
EVRWUP I EVR Wakeup Pin
G16 ESR1 I/O MP / PU1 /
VEXT
External System Request Reset 1
Default NMI function.
See also SCU chapter ´Reset Control Unit´ and
SCU_IOCR register description.
EVRWUP I EVR Wakeup Pin
W17 VGATE1P O VGATE1P
/
- /
VEXT
External Pass Device gate control for EVR13
K16 TMS I A2 /
PD /
VDDP3
JTAG Module State Machine Control Input
DAP1 I/O Device Access Port Line 1
L19 TRST IA2 /
PD /
VDDP3
JTAG Module Reset/Enable Input
Table 2-36 Analog Inputs (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 133 V 1.0 2017-01
J16 TCK I A2 /
PD /
VDDP3
JTAG Module Clock Input
DAP0 I Device Access Port Line 0
M20 XTAL1 I XTAL1 /
- /
VDDP3
Main Oscillator/PLL/Clock Generator Input
M19 XTAL2 O XTAL2 /
- /
VDDP3
Main Oscillator/PLL/Clock Generator Output
Table 2-38 Supply
Pin Symbol Ctrl Type Function
Y6 VAREF1 I Vx Positive Analog Reference Voltage 1
Y7 VAGND1 I Vx Negative Analog Reference Voltage 1
T1 VAREF2 I Vx Positive Analog Reference Voltage 2
T2 VAGND2 I Vx Negative Analog Reference Voltage 2
Y5 VDDM I Vx ADC Analog Power Supply (3.3V / 5V)
G8, H7 VDD / VDDSB I Vx Emulation Device: Emulation SRAM Standby Power
Supply (1.3V) (Emulation Device only).
Production Device: VDD (1.3V).
P8, P13,
N7, N14,
H14, G13
VDD I Vx Digital Core Power Supply (1.3V)
N19 VDD I Vx Digital Core Power Supply (1.3V).
The supply pin inturn supplies the main XTAL
Oscillator/PLL (1.3V) . A higher decoupling capacitor is
therefore recommended to the VSS pin for better noise
immunity.
A2, B3,
V19, W20
VEXT I Vx External Power Supply (5V / 3.3V)
B18, A19 VDDP3 I Vx Digital Power Supply for Flash (3.3V).
Can be also used as external 3.3V Power Supply for
VFLEX.
N20 VDDP3 I Vx Digital Power Supply for Oscillator, LVDSH and A2
pads (3.3V).
The supply pin inturn supplies the main XTAL
Oscillator/PLL (3.3V) . A higher decoupling capacitor is
therefore recommended to the VSS pin for better noise
immunity.
Table 2-37 System I/O (cont’d)
Pin Symbol Ctrl Type Function
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 134 V 1.0 2017-01
E15, D16 VDDFL3 I Vx Flash Power Supply (3.3V)
D5 VFLEX I Vx Digital Power Supply for Flex Port Pads
(5V / 3.3V)
Y4 VSSM I Vx Analog Ground for VDDM
T11 VEVRSB I Vx Standby Power Supply (3.3V/5V) for the Standby
SRAM (CPU0.DSPR).
If Standby mode is not used: To be handled like VEXT
(3.3V/5V).
B2, D4,
E5, L20,
T16, U17,
W19, Y20
VSS I Vx Digital Ground
E16, D17,
B19, A20
VSS I Vx Digital Ground (outer balls)
P9, P12,
N9, N10,
N11, N12
VSS I Vx Digital Ground (center balls)
M7, M8,
M10, M11,
M13, M14
VSS I Vx Digital Ground (center balls)
L8, L9,
L10, L11,
L12, L13
VSS I Vx Digital Ground (center balls)
K8, K9,
K10, K11,
K12, K13
VSS I Vx Digital Ground (center balls)
J7, J8,
J10, J11,
J13, J14
VSS I Vx Digital Ground (center balls)
H9, H10,
H11, H12,
G9, G10,
G11, G12
VSS I Vx Digital Ground (center balls)
P10 VSS I Vx Digital Ground (center balls)
This ball is used in the Emulation Device as
AGBT TX0N
P11 VSS I Vx Digital Ground (center balls)
This ball is used in the Emulation Device as
AGBT TX0P
L7 VSS I Vx Digital Ground (center balls)
This ball is used in the Emulation Device as
AGBT CLKN
Table 2-38 Supply (cont’d)
Pin Symbol Ctrl Type Function
inneon (PORST
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 135 V 1.0 2017-01
Legend:
Column “Ctrl.”:
I = Input (for GPIO port Lines with IOCR bit field Selection PCx = 0XXXB)
O = Output
O0 = Output with IOCR bit field selection PCx = 1X000B
O1 = Output with IOCR bit field selection PCx = 1X001B (ALT1)
O2 = Output with IOCR bit field selection PCx = 1X010B (ALT2)
O3 = Output with IOCR bit field selection PCx = 1X011B (ALT3)
O4 = Output with IOCR bit field selection PCx = 1X100B (ALT4)
O5 = Output with IOCR bit field selection PCx = 1X101B (ALT5)
O6 = Output with IOCR bit field selection PCx = 1X110B (ALT6)
O7 = Output with IOCR bit field selection PCx = 1X111B (ALT7)
Column “Type”:
LP = Pad class LP (5V/3.3V, LVTTL)
MP = Pad class MP (5V/3.3V, LVTTL)
MP+ = Pad class MP+ (5V/3.3V, LVTTL)
MPR = Pad class MPR (5V/3.3V, LVTTL)
A2 = Pad class A2 (3.3V, LVTTL)
LVDSM = Pad class LVDSM (LVDS/CMOS 5V/3.3V)
LVDSH = Pad class LVDSH (LVDS/CMOS 3.3V)
S = Pad class S (ADC overlayed with General Purpose Input)
D = Pad class D (ADC)
PU = with pull-up device connected during reset (PORST = 0)
PU1 = with pull-up device connected during reset (PORST = 0)1) 2) 3)
K7 VSS I Vx Digital Ground (center balls)
This ball is used in the Emulation Device as
AGBT CLKP
L14 VSS I Vx Digital Ground (center balls)
This ball is used in the Emulation Device as
AGBT ERR
K14 NC / VDDPSB I NCVDDP
SB
Emulation Device: Power Supply (3.3V) for DAP/JTAG
pad group. Can be connected to VDDP or can be left
unsupplied (see document ´AurixED´ / Aurix Emulation
Devices specification).
Production Device:
This pin is not connected on package level. It can be
connected on PCB level to VDDP or Ground or can be
left unsupplied.
A1, Y1, U4 NC I NC Not Connected.
These pins are not connected on package level and
will not be used for future extensions.
1)The default state of GPIOs (Px.y) during and after PORST active is controllled via HWCFG[6] (P14.4). HWCFG[6] has a weak
internal pull-up active at start-up if the pin is left unconnected.See also User´s Manual, “Introduction Chapter”, “General
Purpose I/O Ports and Peripheral I/O Lines”, Figure: “Default state of port pins during and after reset”.
Table 2-38 Supply (cont’d)
Pin Symbol Ctrl Type Function
u/. @Ineon t (PORST FORST
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 136 V 1.0 2017-01
PD = with pull-down device connected during reset (PORST = 0)
PD1 = with pull-down device connected during reset (PORST = 0)1) 2) 3)
PX = Behavior depends on usage: PD in EVR13 SMPS Mode and PU1 in GPIO Mode
OD = open drain during reset (PORST = 0)
HighZ = tri-state during reset (PORST = 0)
PORST =PORST input pad
XTAL1 = XTAL1 input pad
XTAL2 = XTAL2 input pad
VGATE1P = VGATE1P
VGATE3P = VGATE3P
Vx = Supply
NC = These pins are reserved for future extensions and shall not be connected externally
NC1 = These pins are not connected on package level and will not be used for future extensions
NCVDDPSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
NCVDDSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
2.2.2 Emergency Stop Function
The Emergency Stop function can be used to force GPIOs (General Purpose Inputs/Outputs) via an external input
signal (EMGSTOPA or EMGSTOPB) into a defined state:
Input state and
PU or High-Z depending on HWCFG[6] level latched during PORST active
Control of the Emergency Stop function:
The Emergency Stop function can be enabled/disabled in the SCU (see chapter “SCU”, “Emergency Stop
Control”)
The Emergency Stop input signal, EMGSTOPA (P33.8) / EMGSTOPB (P21.2) , can selected in the SCU (see
chapter “SCU”, “Emergency Stop Control”)
On port level, each GPIO can be enabled/disabled for the Emergency Stop function via the Px_ESR (Port x
Emergency Stop) registers in the port control logic (see chapter “General Purpose I/O Ports and Peripheral I/O
Lines”, “Emergency Stop Register”).
The Emergency Stop function is available for all GPIO Ports with the following exceptions:
Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode)
Not available for P40.x (analoge input ANx overlayed with GPI)
Not available for P32.0 EVR13 SMPS mode.
Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK)
The Emergency Stop function can be overruled on the following GPIO Ports:
P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register
P00_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00)
P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL mode (DAP over can physical layer mode).
No Overruling in the DXCM (Debug over can message) mode
P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI
P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode
2) If HWCFG[6] is left unconnected or is externally pulled high, weak internal pull-ups (PU1) / pull-downs (PD1) are active
during and after reset.
3) If HWCFG[6] is connected to ground, the PD1 / PU1 pins are predominantly in HighZ during and after reset.
inneon all GF'IOs fl TESTMODE PORST TRST ESRO PORST d TESTMODE W
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC277x Pin Definition and Functions:
Data Sheet 137 V 1.0 2017-01
P20.0: Emergency Stop can be overruled in JTAG mode if this GPIO is used as TDI
2.2.3 Pull-Up/Pull-Down Reset Behavior of the Pins
In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case
of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on.
Table 2-39 List of Pull-Up/Pull-Down Reset Behavior of the Pins
Pins PORST = 0 PORST = 1
all GPIOs Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0
TDI, TESTMODE Pull-up
PORST1)
1) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.
Pull-down with IPORST relevant Pull-down with IPDLI relevant
TRST, TCK, TMS Pull-down
ESR0 The open-drain driver is used to
drive low.2)
2)Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details.
Pull-up3)
3) See the SCU_IOCR register description.
ESR1 Pull-up3)
TDO Pull-up High-Z/Pull-up4)
4) Depends on JTAG/DAP selection with TRST.
/ @fineon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC270x Bare Die Pad Definition
Data Sheet 138 V 1.0 2017-01
2.3 TC270x Bare Die Pad Definition
The TC270x Bare Die Logic Symbol is shown in Figure 2-3.
Table 2-40 describes the pads of the TC270x Bare Die. It describes also the mapping of VADC / DS-ADC
channels to the analog inputs (ANx) and the mapping of Port functions to the pads.
Note:The detailed description of the port functions (Px.y) can be found in the User’s Manual chapter “General
Purpose I/O Ports and Peripheral I/O LInes (Ports)“.
Figure 2-3 TC270x Logic Symbol for the Bare Die.
Table 2-40 List of the TC270x Bare Die Pads
Number Pad Name Pad Type X Y Comment
1 P10.8 LP / PU1 / VEXT 3265500 -3460000 GPIO
2 P02.0 MP+ / PU1 /
VEXT
3374000 -3380000 GPIO
3 P02.9 LP / PU1 / VEXT 3265500 -3300000 GPIO
4 P02.1 LP / PU1 / VEXT 3265500 -3200000 GPIO
5 VSS Vx 3374000 -3125000 Must be bonded to VSS
6 P02.10 LP / PU1 / VEXT 3265500 -3050000 GPIO
7 P02.2 MP+ / PU1 /
VEXT
3374000 -2950000 GPIO
8 P02.11 LP / PU1 / VEXT 3265500 -2850000 GPIO
9 VEXT Vx 3374000 -2775000 Must be bonded to VEXT
10 P02.3 LP / PU1 / VEXT 3265500 -2670000 GPIO
Pad 173
Pad 172
Pad 84
Pad 85
Pad 255
Pad 256 Pad 332
Pad 1
0.0 X
Y
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC270x Bare Die Pad Definition
Data Sheet 139 V 1.0 2017-01
11 P02.4 MP+ / PU1 /
VEXT
3265500 -2540000 GPIO
12 VSS Vx 3374000 -2465000 Must be bonded to VSS
13 P02.5 MP+ / PU1 /
VEXT
3265500 -2390000 GPIO
14 P02.6 MP / PU1 / VEXT 3374000 -2300000 GPIO
15 VEXT Vx 3374000 -2195000 Must be bonded to VEXT
16 P02.7 MP / PU1 / VEXT 3265500 -2110000 GPIO
17 P02.8 LP / PU1 / VEXT 3374000 -2040000 GPIO
18 VSS Vx 3374000 -1940000 Must be bonded to VSS
19 P01.3 LP / PU1 / VEXT 3265500 -1883500 GPIO
20 VDD Vx 3374000 -1818500 Must be bonded to VDD
21 VSS Vx 3374000 -1688500 Must be bonded to VSS
22 VSS Vx 3374000 -1644500 Must be bonded to VSS.
Double Pad (Elephant
Pad), shared with Pad Nr
22.
23 VDD Vx 3374000 -1514500 Must be bonded to VSS.
Double Pad (Elephant
Pad), shared with Pad Nr
21.
24 P01.4 LP / PU1 / VEXT 3265500 -1449500 GPIO
25 VSS Vx 3374000 -1394500 Must be bonded to VSS
26 P01.5 LP / PU1 / VEXT 3265500 -1339500 GPIO
27 P01.6 LP / PU1 / VEXT 3265500 -1239500 GPIO
28 P01.7 LP / PU1 / VEXT 3265500 -1139500 GPIO
29 VEXT Vx 3374000 -1068500 Must be bonded to VEXT
30 VSS Vx 3374000 -968500 Must be bonded to VSS
31 P00.0 MP / PU1 / VEXT 3265500 -868500 GPIO
32 P00.1 LP / PU1 / VEXT 3265500 -241000 GPIO
33 P00.2 LP / PU1 / VEXT 3265500 -141000 GPIO
34 P00.3 LP / PU1 / VEXT 3265500 -41000 GPIO
35 VSS Vx 3374000 19000 Must be bonded to VSS
36 P00.4 LP / PU1 / VEXT 3265500 79000 GPIO
37 P00.5 LP / PU1 / VEXT 3265500 179000 GPIO
38 P00.6 LP / PU1 / VEXT 3265500 279000 GPIO
39 VEXT Vx 3374000 339000 Must be bonded to VEXT
40 P00.7 LP / PU1 / VEXT 3265500 399000 GPIO
41 P00.8 LP / PU1 / VEXT 3374000 459000 GPIO
42 P00.9 LP / PU1 / VEXT 3265500 549000 GPIO
Table 2-40 List of the TC270x Bare Die Pads
Number Pad Name Pad Type X Y Comment
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC270x Bare Die Pad Definition
Data Sheet 140 V 1.0 2017-01
43 P00.10 LP / PU1 / VEXT 3374000 609000 GPIO
44 P00.11 LP / PU1 / VEXT 3265500 689000 GPIO
45 VSS Vx 3374000 749000 Must be bonded to VSS
46 P00.12 LP / PU1 / VEXT 3265500 809000 GPIO
47 VDD Vx 3374000 864000 Must be bonded to VDD
48 VSS Vx 3374000 964000 Must be bonded to VSS
49 VSS Vx 3374000 1064000 Must be bonded to VSS
50 VDD Vx 3374000 1164000 Must be bonded to VDD
51 VEXT Vx 3265500 1239000 Must be bonded to VEXT
52 VSS Vx 3374000 1299000 Must be bonded to VSS
53 VAREF3 Vx 3374000 1419000 Positive Analog Reference
Voltage 3
54 VAREF2 Vx 3265500 1479000 Positive Analog Reference
Voltage 2
55 VAGND3 Vx 3374000 1539000 Negative Analog Reference
Voltage 3
56 VAGND2 Vx 3265500 1599000 Negative Analog Reference
Voltage 2
57 VDDM Vx 3374000 1659000 Must be bonded to VEXT
58 AN47 (VADC5.7 /
DS3ND)
D 3265500 1719000 Analog input
59 AN46 (VADC5.6 /
DS3PD)
D 3374000 1779000 Analog input
60 AN45 (VADC5.5 /
DS3NC)
D 3265500 1839000 Analog input
61 AN44 (VADC5.4 /
DS3PC)
D 3374000 1899000 Analog input
62 AN43 (VADC5.3) D 3265500 1959000 Analog input (with pull
down diagnostics)
63 AN42 (VADC5.2) D 3374000 2019000 Analog input
64 AN41 (VADC5.1) D 3265500 2079000 Analog input
65 AN40 (VADC5.0) D 3374000 2139000 Analog input
66 AN39 (VADC4.7 /
DS3NB), P40.9 (
SENT9A)
S 3265500 2199000 Analog input, GPI (SENT)
67 AN38 (VADC4.6 /
DS3PB), P40.8 (
SENT8A)
S 3374000 2259000 Analog input, GPI (SENT)
68 AN37 (VADC4.5 /
DS3NA), P40.7 (
SENT7A)
S 3265500 2319000 Analog input, GPI (SENT)
Table 2-40 List of the TC270x Bare Die Pads
Number Pad Name Pad Type X Y Comment
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC270x Bare Die Pad Definition
Data Sheet 141 V 1.0 2017-01
69 VDDM Vx 3374000 2379000 Must be bonded to VEXT
70 AN36 (VADC4.4 /
DS3PA), P40.6 (
SENT6A)
S 3265500 2439000 Analog input, GPI (SENT)
71 VSSM Vx 3374000 2499000 Must be bonded to VSS
72 AN35 (VADC4.3) D 3265500 2559000 Analog input (with pull
down diagnostics)
73 AN34 (VADC4.2) D 3374000 2619000 Analog input
74 AN33
(VADC4.1),
P40.5 ( SENT5A)
S 3265500 2679000 Analog input, GPI (SENT)
75 AN32
(VADC4.0),
P40.4 ( SENT4A)
S 3374000 2765000 Analog input, GPI (SENT)
76 AN31 (VADC3.7) D 3265500 2825000 Analog input
77 AN30 (VADC3.6) D 3374000 2885000 Analog input
78 AN29 (VADC3.5) D 3265500 2945000 Analog input
79 AN28 (VADC3.4) D 3374000 3045000 GPIO
80 AN27
(VADC3.3),
P40.3 ( SENT3A)
S 3265500 3105000 Analog input (with pull
down diagnostics), GPI
(SENT)
81 AN26
(VADC3.2),
P40.2 ( SENT2A)
S 3265500 3205000 Analog input, GPI (SENT)
82 AN25 (VADC3.1 /
DS2NB), P40.1 (
SENT1A)
S 3265500 3305000 Analog input, GPI (SENT)
83 AN24 (VADC3.0 /
DS2PB), P40.0 (
SENT0A)
S 3265500 3405000 Analog input, GPI (SENT)
84 VDDM Vx 3374000 3465000 Must be bonded to VEXT
85 VSSM Vx 3134000 3705000 Must be bonded to VSS
86 AN23 (VADC2.7) D 3074000 3596500 Analog input
87 AN22 (VADC2.6) D 3014000 3705000 Analog input
88 AN21 (VADC2.5 /
DS2NA)
D 2954000 3596500 Analog input
89 AN20 (VADC2.4 /
DS2PA)
D 2854000 3596500 Analog input
90 AN19 (VADC2.3) D 2754000 3596500 Analog input (with pull
down diagnostics)
91 AN18 (VADC2.2) D 2654000 3596500 Analog input
92 AN17 (VADC2.1) D 2554000 3596500 Analog input
Table 2-40 List of the TC270x Bare Die Pads
Number Pad Name Pad Type X Y Comment
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC270x Bare Die Pad Definition
Data Sheet 142 V 1.0 2017-01
93 AN16 (VADC2.0) D 2494000 3705000 Analog input
94 AN15 (VADC1.7) D 2434000 3596500 Analog input
95 VAGND1 Vx 2374000 3705000 Negative Analog Reference
Voltage 1
96 VAGND0 Vx 2314000 3596500 Negative Analog Reference
Voltage 0
97 VAREF1 Vx 2254000 3705000 Positive Analog Reference
Voltage 1
98 VAREF0 Vx 2194000 3596500 Positive Analog Reference
Voltage 0
99 VSSM Vx 2134000 3705000 Must be bonded to VSS
100 VSSM Vx 2074000 3596500 Must be bonded to VSS
101 VSSMREF Vx 2014000 3705000 Must be bonded to VSS
102 AN14 (VADC1.6) D 1954000 3596500 Analog input
103 VDDM Vx 1894000 3705000 Must be bonded to VEXT
104 VDDM Vx 1829000 3596500 Must be bonded to VEXT
105 AN13 (VADC1.5) D 1724000 3596500 Analog input
106 AN12 (VADC1.4) D 1664000 3705000 Analog input
107 AN11 (VADC1.3) D 1604000 3596500 Analog input (with pull
down diagnostics)
108 AN10 (VADC1.2) D 1544000 3705000 Analog input
109 AN9 (VADC1.1) D 1484000 3569500 Analog input
110 AN8 (VADC1.0) D 1424000 3705000 Analog input
111 AN7 (VADC0.7) D 1364000 3596500 Analog input (with pull
down diagnostics)
112 AN6 (VADC0.6) D 1304000 3705000 Analog input
113 AN5 (VADC0.5) D 1244000 3596500 Analog input
114 AN4 (VADC0.4) D 1184000 3705000 Analog input
115 AN3 (VADC0.3 /
DS0NA)
D 1124000 3596500 Analog input
116 VSSM Vx 1064000 3705000 Must be bonded to VSS
117 AN2 (VADC0.2 /
DS0PA)
D 1004000 3596500 Analog input
118 VDDM Vx 944000 3705000 Must be bonded to VEXT
119 AN1 (VADC0.1 /
DS1NA)
D 884000 3596500 Analog input
120 AN0 (VADC0.0 /
DS1PA)
D 807000 3705000 Analog input
121 VEXT Vx 427000 3596500 Must be bonded to VEXT
122 VSS Vx 377000 3705000 Must be bonded to VSS
Table 2-40 List of the TC270x Bare Die Pads
Number Pad Name Pad Type X Y Comment
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC270x Bare Die Pad Definition
Data Sheet 143 V 1.0 2017-01
123 P34.1 LP / PU1 / VEXT 322000 3596500 GPIO
124 VSS Vx 267000 3705000 Must be bonded to VSS
125 P34.2 LP / PU1 / VEXT 212000 3596500 GPIO
126 P34.3 LP / PU1 / VEXT 142000 3705000 GPIO
127 VEXT Vx 87000 3596500 Must be bonded to VEXT
128 P34.4 LP / PU1 / VEXT 22000 3705000 GPIO
129 P34.5 LP / PU1 / VEXT -38000 3596500 GPIO
130 VSS Vx -93000 3705000 Must be bonded to VSS
131 VDD Vx -193000 3705000 Must be bonded to VDD
132 VSS Vx -323000 3705000 Must be bonded to VSS.
Double Pad (Elephant
Pad), shared with Pad Nr
131.
133 VSS Vx -363000 3705000 Must be bonded to VSS.
Double Pad (Elephant
Pad), shared with Pad Nr
130.
134 VDD Vx -493000 3705000 Must be bonded to VDD
135 VEVRSB Vx -560000 3596500 Must be bonded to VEXT
136 EVR_OFF Vx -625000 3705000 Must be bonded to
VSS+F178
137 VEXT Vx -725000 3705000 Must be bonded to VEXT
138 P33.0 LP / PU1 / VEXT -790000 3596500 GPIO
139 P33.1 LP / PU1 / VEXT -855000 3705000 GPIO
140 P33.2 LP / PU1 / VEXT -915000 3596500 GPIO
141 P33.3 LP / PU1 / VEXT -985000 3705000 GPIO
142 P33.4 LP / PU1 / VEXT -1045000 3596500 GPIO
143 VSS Vx -1100000 3705000 Must be bonded to VSS
144 P33.5 LP / PU1 / VEXT -1155000 3596500 GPIO
145 P33.6 LP / PU1 / VEXT -1250000 3705000 GPIO
146 P33.7 LP / PU1 / VEXT -1310000 3596500 GPIO
147 P33.8 MP / HighZ /
VEXT
-1420000 3705000 GPIO
148 P33.9 LP / PU1 / VEXT -1490000 3596500 GPIO
149 VEXT Vx -1545000 3705000 Must be bonded to VEXT
150 P33.10 MP / PU1 / VEXT -1610000 3596500 GPIO
151 P33.14 LP / PU1 / VEXT -1680000 3705000 GPIO
152 P33.11 MP / PU1 / VEXT -1750000 3596500 GPIO
153 P33.15 LP / PU1 / VEXT -1820000 3705000 GPIO
154 P33.12 MP / PU1 / VEXT -1890000 3596500 GPIO
Table 2-40 List of the TC270x Bare Die Pads
Number Pad Name Pad Type X Y Comment
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC270x Bare Die Pad Definition
Data Sheet 144 V 1.0 2017-01
155 VSS Vx -1955000 3705000 Must be bonded to VSS
156 P33.13 MP / PU1 / VEXT -2040000 3596500 GPIO
157 VSS Vx -2105000 3705000 Must be bonded to VSS
158 VDD Vx -2205000 3705000 Must be bonded to VDD
159 P32.0 LP / EVR13
SMPS -> PD,
GPIO -> PU1 /
VEXT
-2260000 3596500 GPIO
160 VGATE1N
(SMPS)
VGATE1N -2315000 3705000 Must be bonded to VSS if
EVR13 SMPS is not used.
Must be bonded to NMOS
gate if EVR13 SMPS used.
161 VGATE1P
(SMPS)
VGATE1P -2365000 3596500 Must be bonded to VEXT if
EVR13 SMPS is not used.
Must be bonded to PMOS
gate if EVR13 SMPS used.
162 VGATE3P (LDO) VGATE3P -2415000 3705000 Must be bonded to VSS
163 VGATE1P (LDO) VGATE1P -2465000 3596500 Must be bonded to VSS if
no external P channel
MOSFET used for EVR13
LDO generation. Must be
bonded to external P
channnel MOSFET if
external LDO pass device
used.
164 VEXT Vx -2515000 3705000 Must be bonded to VEXT
165 P32.2 LP / PU1 / VEXT -2570000 3596500 GPIO
166 P32.3 LP / PU1 / VEXT -2714000 3596500 GPIO
167 P32.6 LP / PU1 / VEXT -2774000 3705000 GPIO
168 P32.5 LP / PU1 / VEXT -2849000 3596500 GPIO
169 VSS Vx -2904000 3705000 Must be bonded to VSS
170 P32.4 MP+ / PU1 /
VEXT
-2989000 3596500 GPIO
171 P32.7 LP / PU1 / VEXT -3069000 3705000 GPIO
172 P23.0 LP / PU1 / VEXT -3129000 3596500 GPIO
173 VSS Vx -3374000 3391000 Must be bonded to VSS
174 P23.1 MP+ / PU1 /
VEXT
-3265500 3316000 GPIO
175 P23.2 LP / PU1 / VEXT -3374000 3236000 GPIO
176 P23.3 LP / PU1 / VEXT -3265500 3125000 GPIO
177 P23.4 MP+ / PU1 /
VEXT
-3374000 3045000 GPIO
Table 2-40 List of the TC270x Bare Die Pads
Number Pad Name Pad Type X Y Comment
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC270x Bare Die Pad Definition
Data Sheet 145 V 1.0 2017-01
178 P23.6 LP / PU1 / VEXT -3265500 2965000 GPIO
179 VEXT Vx -3374000 2910000 Must be bonded to VEXT
180 P23.5 MP+ / PU1 /
VEXT
-3265500 2835000 GPIO
181 P23.7 LP / PU1 / VEXT -3374000 2755000 GPIO
182 P22.0 MP / LVDSM_N /
PU1 / VEXT
-3265500 2685000 GPIO
183 P22.1 MP / LVDS_P /
PU1 / VEXT
-3265500 2335000 GPIO
184 VSS Vx -3374000 2270000 Must be bonded to VSS
185 P22.2 MP / LVDSM_N /
PU1 / VEXT
-3265500 2205000 GPIO
186 P22.3 MP / LVDS_P /
PU1 / VEXT
-3265500 1855000 GPIO
187 VEXT Vx -3374000 1790000 Must be bonded to VEXT
188 VEXT Vx -3265500 1735000 Must be bonded to VEXT
189 Reserved Vx -3374000 1680000 Must be bonded to VSS
190 VDD Vx -3374000 1580000 Must be bonded to VDD
191 VSS Vx -3374000 1480000 Must be bonded to VSS
192 P22.4 LP / PU1 / VEXT -3265500 1425000 GPIO
193 VSS Vx -3374000 1370000 Must be bonded to VSS
194 VDD Vx -3374000 1270000 Must be bonded to VDD
195 P22.5 LP / PU1 / VEXT -3265500 1215000 GPIO
196 P22.6 LP / PU1 / VEXT -3374000 1155000 GPIO
197 P22.7 LP / PU1 / VEXT -3265500 1095000 GPIO
198 VSS Vx -3374000 1040000 Must be bonded to VSS
199 VDD Vx -3374000 940000 Must be bonded to VDD
200 P22.8 LP / PU1 / VEXT -3265500 885000 GPIO
201 P22.9 LP / PU1 / VEXT -3374000 825000 GPIO
202 P22.10 LP / PU1 / VEXT -3265500 765000 GPIO
203 VSS Vx -3374000 710000 Must be bonded to VSS
204 P22.11 LP / PU1 / VEXT -3265500 655000 GPIO
205 VDDOSC Vx -3374000 520000 Must be bonded to VDD
206 VSSOSC Vx -3374000 420000 Must be bonded to VSS
207 XTAL1 XTAL1 -3265500 312500 Main Oscillator/PLL/Clock
Generator Input. Must be
bonded to external quartz
or resonator
Table 2-40 List of the TC270x Bare Die Pads
Number Pad Name Pad Type X Y Comment
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC270x Bare Die Pad Definition
Data Sheet 146 V 1.0 2017-01
208 XTAL2 XTAL2 -3265500 212500 Main Oscillator/PLL/Clock
Generator Input. Must be
bonded to external quartz
or resonator
209 VSSOSC3 Vx -3374000 105000 Must be bonded to VSS
210 VDDOSC3 Vx -3265500 55000 Must be bonded to VDDP3
211 VDDP3 Vx -3374000 -35000 Must be bonded to VDDP3
212 VDDP3 Vx -3265500 -95000 Must be bonded to VDDP3
213 VSS Vx -3374000 -145000 Must be bonded to VSS
214 P21.0 A2 / PU1 /
VDDP3
-3374000 -245000 GPIO
215 P21.1 A2 / PU1 /
VDDP3
-3265500 -345000 GPIO
216 VSS Vx -3374000 -395000 Must be bonded to VSS
217 P21.2 LVDSH_N / PU1
/ VDDP3
-3265500 -457500 GPIO
218 P21.3 LVDSH_P / PU1
/ VDDP3
-3265500 -557500 GPIO
219 VDDP3 Vx -3374000 -620000 Must be bonded to VDDP3
220 P21.4 LVDSH_N / PU1
/ VDDP3
-3265500 -694500 GPIO
221 P21.5 LVDSH_P / PU1
/ VDDP3
-3265500 -845500 GPIO
222 VDD Vx -3374000 -920000 Must be bonded to VDD
223 VSS Vx -3374000 -1020000 Must be bonded to VSS
224 P21.6 A2 / PU / VDDP3 -3265500 -1070000 GPIO, TDI
225 VDDP3 Vx -3374000 -1120000 Must be bonded to VDDP3
226 VSS Vx -3374000 -1345000 Must be bonded to VSS
227 TMS / DAP1 A2 / PD / VDDP3 -3265500 -1395000 JTAG Module State
Machine Control Input /
Device Access Port Line 1
228 P21.7 A2 / PU / VDDP3 -3374000 -1445000 GPIO, TDO
229 TRST (N) A2 / PU / VDDP3 -3265500 -1535000 JTAG Module
Reset/Enable Input
230 TCK / DAP0 A2 / PU / VDDP3 -3374000 -1585000 JTAG Module Clock Input /
Device Access Port Line 0
231 P20.0 MP / PU1 / VEXT -3265500 -1720000 GPIO
232 P20.1 LP / PU1 / VEXT -3374000 -1790000 GPIO
233 P20.2 LP / PU / VEXT -3265500 -1845000 Testmode pin must be
bonded
234 VSS Vx -3374000 -1895000 Must be bonded to VSS
Table 2-40 List of the TC270x Bare Die Pads
Number Pad Name Pad Type X Y Comment
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC270x Bare Die Pad Definition
Data Sheet 147 V 1.0 2017-01
235 P20.3 LP / PU1 / VEXT -3265500 -1950000 GPIO
236 ESR1 (N) /
EVRWUP
MP / PU1 / VEXT -3374000 -2020000 External System Request
Reset 1. Default NMI
function. EVR Wakeup Pin.
237 PORST (N) I / PD1 / VEXT -3265500 -2102500 Power On Reset Input.
Additional strong PD in
case of power fail.
238 VEXT Vx -3374000 -2170000 Must be bonded to VEXT
239 ESR0 (N) /
EVRWUP
MP / OD -3265500 -2235000 External System Request
Reset 0. Default
configuration during and
after reset is open-drain
driver. The driver drives low
during power-on reset. EVR
Wakeup Pin.
240 VDD Vx -3374000 -2310000 Must be bonded to VDD
241 VSS Vx -3374000 -2440000 Must be bonded to VSS.
Double Pad (Elephant
Pad), shared with Pad Nr
240.
242 VSS Vx -3374000 -2480000 Must be bonded to VSS.
Double Pad (Elephant
Pad), shared with Pad Nr
239.
243 VDD Vx -3374000 -2610000 Must be bonded to VDD
244 P20.6 LP / PU1 / VEXT -3265500 -2665000 GPIO
245 VSS Vx -3374000 -2720000 Must be bonded to VSS
246 P20.7 LP / PU1 / VEXT -3265500 -2775000 GPIO
247 P20.8 MP / PU1 / VEXT -3374000 -2865000 GPIO
248 P20.9 LP / PU1 / VEXT -3265500 -2935000 GPIO
249 VEXT Vx -3374000 -2990000 Must be bonded to VEXT
250 P20.10 MP / PU1 / VEXT -3265500 -3055000 GPIO
251 P20.11 MP / PU1 / VEXT -3374000 -3155000 GPIO
252 P20.12 MP / PU1 / VEXT -3265500 -3235000 GPIO
253 VSS Vx -3374000 -3300000 Must be bonded to VSS
254 P20.13 MP / PU1 / VEXT -3265500 -3365000 GPIO
255 P20.14 MP / PU1 / VEXT -3265500 -3465000 GPIO
256 P15.0 LP / PU1 / VEXT -3134000 -3596500 GPIO
257 P15.1 LP / PU1 / VEXT -3034000 -3596500 GPIO
258 P15.2 MP / PU1 / VEXT -2964000 -3705000 GPIO
259 P15.3 MP / PU1 / VEXT -2864000 -3705000 GPIO
260 VEXT Vx -2799000 -3596500 Must be bonded to VEXT
Table 2-40 List of the TC270x Bare Die Pads
Number Pad Name Pad Type X Y Comment
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC270x Bare Die Pad Definition
Data Sheet 148 V 1.0 2017-01
261 P15.4 MP / PU1 / VEXT -2734000 -3705000 GPIO
262 P15.5 MP / PU1 / VEXT -2634000 -3705000 GPIO
263 P15.6 MP / PU1 / VEXT -2522000 -3596500 GPIO
264 VSS Vx -2457000 -3705000 Must be bonded to VSS
265 P15.7 MP / PU1 / VEXT -2392000 -3596500 GPIO
266 P15.8 MP / PU1 / VEXT -2312000 -3705000 GPIO
267 P14.0 MP+ / PU1 /
VEXT
-2222000 -3596500 GPIO
268 P14.1 MP / PU1 / VEXT -2122000 -3596500 GPIO
269 VEXT Vx -2057000 -3705000 Must be bonded to VEXT
270 P14.2 LP / PU1 / VEXT -2002000 -3596500 Must be bonded to VEXT if
EVR13 active. Must be
bonded to VSS if EVR13
inactive.
271 P14.3 LP / PU1 / VEXT -1942000 -3705000 GPIO
272 P14.4 LP / PU1 / VEXT -1872000 -3596500 GPIO
273 VSS Vx -1817000 -3705000 Must be bonded to VSS
274 P14.5 MP+ / PU1 /
VEXT
-1742000 -3596500 GPIO
275 P14.6 MP+ / PU1 /
VEXT
-1642000 -3705000 GPIO
276 P14.7 LP / PU1 / VEXT -1562000 -3596500 GPIO
277 P14.8 LP / PU1 / VEXT -1502000 -3705000 GPIO
278 P14.9 MP+ / PU1 /
VEXT
-1422000 -3596500 GPIO
279 P14.10 MP+ / PU1 /
VEXT
-1322000 -3596500 GPIO
280 Reserved Vx -1247000 -3705000 Must be bonded to VSS
281 VEXT Vx -1197000 -3596500 Must be bonded to VEXT
282 VSS Vx -1147000 -3705000 Must be bonded to VSS
283 VEXT Vx -1097000 -3596500 Must be bonded to VEXT
284 VSS Vx -1017000 -3705000 Must be bonded to VSS.
Double Pad (Elephant
Pad), shared with Pad Nr
284.
285 VDDP3 Vx -994500 -3596500 Must be bonded to VDDP3
286 VSS Vx -972000 -3705000 Must be bonded to VSS.
Double Pad (Elephant
Pad), shared with Pad Nr
282.
287 VDDP3 Vx -877000 -3596500 Must be bonded to VDDP3
Table 2-40 List of the TC270x Bare Die Pads
Number Pad Name Pad Type X Y Comment
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC270x Bare Die Pad Definition
Data Sheet 149 V 1.0 2017-01
288 VDDFL3 Vx -777000 -3596500 Must be bonded to VDDP3
289 VDDFL3 Vx -697000 -3705000 Must be bonded to VDDP3
290 VDDFL3 Vx -629500 -3596500 Must be bonded to VDDP3
291 VSS Vx -577000 -3705000 Must be bonded to VSS
292 P13.0 MP / LVDSM_N /
PU1 / VEXT
-512000 -3596500 GPIO
293 P13.1 MP / LVDS_P /
PU1 / VEXT
-162000 -3596500 GPIO
294 VEXT Vx -97000 -3705000 Must be bonded to VEXT
295 P13.2 MP / LVDSM_N /
PU1 / VEXT
-32000 -3596500 GPIO
296 P13.3 MP / LVDS_P /
PU1 / VEXT
318000 -3596500 GPIO
297 P12.0 LP / PU1 /
VFLEX
458000 -3596500 GPIO
298 P12.1 LP / PU1 /
VFLEX
518000 -3705000 GPIO
299 P11.0 MP+ / PU1 /
VFLEX
598000 -3596500 GPIO
300 VSSFLEX Vx 673000 -3705000 Must be bonded to VSS
301 P11.1 MP+ / PU1 /
VFLEX
748000 -3596500 GPIO
302 VFLEX Vx 823000 -3705000 Must be bonded to VEXT or
VDDP3
303 P11.2 MPR / PU1 /
VFLEX
898000 -3596500 GPIO
304 P11.3 MPR / PU1 /
VFLEX
998000 -3596500 GPIO
305 P11.4 MP+ / PU1 /
VFLEX
1098000 -3705000 GPIO
306 P11.5 LP / PU1 /
VFLEX
1178000 -3596500 GPIO
307 P11.6 MPR / PU1 /
VFLEX
1258000 -3705000 GPIO
308 P11.7 LP / PU1 /
VFLEX
1338000 -3596500 GPIO
309 P11.9 MP+ / PU1 /
VFLEX
1418000 -3705000 GPIO
310 P11.8 LP / PU1 /
VFLEX
1498000 -3596500 GPIO
311 VSSFLEX Vx 1553000 -3705000 Must be bonded to VSS
Table 2-40 List of the TC270x Bare Die Pads
Number Pad Name Pad Type X Y Comment
@neon
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC270x Bare Die Pad Definition
Data Sheet 150 V 1.0 2017-01
Legend:
Column “Number”:
Running number of pads in the pad frame
Column “Name”:
Symbolic name of the pad.
The functions mapped on GPIO pads “Px.y” are described in the User’s Manual chapter ”General Purpose I/O
Ports and Peripheral I/O LInes (Ports)”
Column “Type”:
LP = Pad class LP (5V/3.3V, LVTTL)
MP = Pad class MP (5V/3.3V, LVTTL)
MP+ = Pad class MP+ (5V/3.3V, LVTTL)
312 VFLEX Vx 1603000 -3596500 Must be bonded to VEXT or
VDDP3
313 P11.10 LP / PU1 /
VFLEX
1698000 -3705000 GPIO
314 P11.13 LP / PU1 /
VFLEX
1758000 -3596500 GPIO
315 VSSFLEX Vx 1813000 -3705000 Must be bonded to VSS
316 P11.11 MP+ / PU1 /
VFLEX
1888000 -3596500 GPIO
317 P11.12 MPR / PU1 /
VFLEX
1988000 -3596500 GPIO
318 P11.14 LP / PU1 /
VFLEX
2068000 -3705000 GPIO
319 P11.15 LP / PU1 /
VFLEX
2128000 -3596500 GPIO
320 VDD Vx 2183000 -3705000 Must be bonded to VDD
321 VSS Vx 2283000 -3705000 Must be bonded to VSS
322 VSS Vx 2403000 -3705000 Must be bonded to VSS
323 P10.0 LP / PU1 / VEXT 2458000 -3596500 GPIO
324 P10.1 MP+ / PU1 /
VEXT
2543000 -3705000 GPIO
325 P10.2 MP / PU1 / VEXT 2643000 -3705000 GPIO
326 P10.3 MP / PU1 / VEXT 2723000 -3596500 GPIO
327 P10.4 MP+ / PU1 /
VEXT
2834000 -3705000 GPIO
328 VEXT Vx 2909000 -3596500 Must be bonded to VEXT
329 P10.5 LP / PU1 / VEXT 2964000 -3705000 GPIO
330 P10.6 LP / PU1 / VEXT 3024000 -3596500 GPIO
331 VSS Vx 3079000 -3705000 Must be bonded to VSS
332 P10.7 LP / PU1 / VEXT 3134000 -3596500 GPIO
Table 2-40 List of the TC270x Bare Die Pads
Number Pad Name Pad Type X Y Comment
u/. @Ineon PORST PORST
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC270x Bare Die Pad Definition
Data Sheet 151 V 1.0 2017-01
MPR = Pad class MPR (5V/3.3V, LVTTL)
A2 = Pad class A2 (3.3V, LVTTL)
LVDSM = Pad class LVDSM (LVDS/CMOS 5V/3.3V)
LVDSH = Pad class LVDSH (LVDS/CMOS 3.3V)
S = Pad class S (ADC overlayed with General Purpose Input)
D = Pad class D (ADC)
PU = with pull-up device connected during reset (PORST = 0)
PU1 = with pull-up device connected during reset (PORST = 0)1) 2) 3)
PD = with pull-down device connected during reset (PORST = 0)
PD1 = with pull-down device connected during reset (PORST = 0)1) 2) 3)
PX = Behavior depends on usage: PD in EVR13 SMPS Mode and PU1 in GPIO Mode
OD = open drain during reset (PORST = 0)
HighZ = tri-state during reset (PORST = 0)
PORST =PORST input pad
XTAL1 = XTAL1 input pad
XTAL2 = XTAL2 input pad
VGATE1P = VGATE1P
VGATE3P = VGATE3P
Vx = Supply
NC = These pins are reserved for future extensions and shall not be connected externally
NC1 = These pins are not connected on package level and will not be used for future extensions
NCVDDPSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
NCVDDSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
Column “X” / “Y”:
Pad opening center coordinates (in nm)
2.3.1 Pad Openings
Two different pad openings are used:
Standard Pad Opening is 70um x 75um where 70um is the width of the opening (width as seen from the die
side) and 75um is the depth of the opening (from the die side into the silicon).
Double Pad or Elephant Pad Opening is 130um x 75um where 130um is the width of the opening (width as
seen from the die side) and 75um is the depth of the opening (from the die side into the silicon). The Double
Pad openings are represented with two opening coordinates and two pad numbers. Double Pads are used only
for supply and can be identified by the words ´Double Pad´ or ´Elephant Pad´ in the Comment column.
2.3.2 Emergency Stop Function
The Emergency Stop function can be used to force GPIOs (General Purpose Inputs/Outputs) via an external input
signal (EMGSTOPA or EMGSTOPB) into a defined state:
1)The default state of GPIOs (Px.y) during and after PORST active is controllled via HWCFG[6] (P14.4). HWCFG[6] has a weak
internal pull-up active at start-up if the pin is left unconnected.See also User´s Manual, “Introduction Chapter”, “General
Purpose I/O Ports and Peripheral I/O Lines”, Figure: “Default state of port pins during and after reset”.
2) If HWCFG[6] is left unconnected or is externally pulled high, weak internal pull-ups are active at GPIOs (Px.y) pins during
and after reset. Exceptions are P33.8 (HighZ), P40.x (default configuration during and after reset: analog inputs, port input
funtion disabled), ESR0, P21.6 / P21.7 (port pins overlayed with JTAG functionality).
3) If HWCFG[6] is connected to ground, port pins are predominantly in HighZ during and after reset. Exceptions are P33.8
(HighZ), P40.x (default configuration during and after reset: analog inputs, port input funtion disabled), ESR0, P21.6 / P21.7
(port pins overlayed with JTAG functionality).
inneon PORST m mm W W ESRO
TC270 / TC275 / TC277 DC-Step
Package and Pinning DefinitionsTC270x Bare Die Pad Definition
Data Sheet 152 V 1.0 2017-01
Input state and
PU or HighZ depending on HWCFG[6] level latched during PORST active
Control of the Emergency Stop function:
The Emergency Stop function can be enabled/disabled in the SCU (see chapter “SCU”, “Emergency Stop
Control”)
The Emergency Stop input signal, EMGSTOPA (P33.8) / EMGSTOPB (P21.2) , can selected in the SCU (see
chapter “SCU”, “Emergency Stop Control”)
On port level, each GPIO can be enabled/disabled for the Emergency Stop function via the Px_ESR (Port x
Emergency Stop) registers in the port control logic (see chapter “General Purpose I/O Ports and Peripheral I/O
Lines”, “Emergency Stop Register”).
The Emergency Stop function is available for all GPIO Ports with the following exceptions:
Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode)
Not available for P40.x (analoge input ANx overlayed with GPI)
Not available for P32.0 EVR13 SMPS mode.
Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK)
The Emergency Stop function can be overruled on the following GPIO Ports:
P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register
P00_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00)
P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL mode (DAP over can physical layer mode).
No Overruling in the DXCM (Debug over can message) mode
P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI
P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode
P20.0: Emergency Stop can be overruled in JTAG mode if this GPIO is used as TDI
2.3.3 Pull-Up/Pull-Down Reset Behavior of the Pins
In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In
case of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on.
Table 2-41 List of Pull-Up/Pull-Down Reset Behavior of the Pins
Pins PORST = 0 PORST = 1
all GPIOs Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0
TDI, TESTMODE Pull-up
PORST1)
1) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.
Pull-down with IPORST relevant Pull-down with IPDLI relevant
TRST, TCK, TMS Pull-down
ESR0 The open-drain driver is used to
drive low.2)
2) Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details.
Pull-up3)
3) See the SCU_IOCR register description.
ESR1 Pull-up3)
TDO Pull-up High-Z/Pull-up4)
4) Depends on JTAG/DAP selection with TRST.
@160"
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationParameter Interpretation
Data Sheet 153 V 1.0 2017-01
3 Electrical Specification
3.1 Parameter Interpretation
The parameters listed in this section partly represent the characteristics of the TC270 / TC275 / TC277 and partly
its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they
are marked with an two-letter abbreviation in column “Symbol”:
CC
Such parameters indicate Controller Characteristics which are a distinctive feature of the TC270 / TC275 /
TC277 and must be regarded for a system design.
SR
Such parameters indicate System Requirements which must provided by the microcontroller system in which
the TC270 / TC275 / TC277 designed in.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationAbsolute Maximum Ratings
Data Sheet 154 V 1.0 2017-01
3.2 Absolute Maximum Ratings
Stresses above the values listed under “Absolute Maximum Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at these or any other conditions above those
indicated in the Operational Conditions of this specification is not implied. Exposure to absolute maximum rating
conditions may affect device reliability.
Table 3-1 Absolute Maximum Ratings
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Storage Temperature TST SR -65 - 170 °C upto 65h @ TJ =
150°C; upto 15h @ TJ
= 170°C
Voltage at VDD power supply
pins with respect to VSS 1)
1) Valid for cumulated for up to 2.8h and pulse forms following a power supply switch on phase, where the rise and fall times
are releated to the system capacities and coils.
VDD SR--1.9 V
Voltage at VDDP3 and VDDFL3
power supply pins with respect
to VSS 1)
VDDP3 SR--4.43 V
Voltage at VDDM, VEXT and
VFLEX power supply pins with
respect to VSS 1)
VDDM SR--7.0 V
Voltage on any class A2 and
LVDSH input pin with respect
to VSS 1)2)
2) Voltages below VINmin have no Impact to the device reliabiltiy as Long as the times and currents defined in section Pin
Reliability in Overload for the affected pad(s) are not violated.
VIN SR -0.5 - min(
VDDP3 +
0.6 , 4.23
)
V Whatever is lower
Voltage on all other input pins
with respect to VSS 1)2)
VIN SR -0.5 - 7.0 V
Input current on any pin during
overload condition 3)
3) This parameter is an Absolute Maximum Rating. Exposure to Absolute Maximum Ratings for extended periods of time may
damage the device.
IIN SR -10 - 10 mA
Absolute maximum sum of all
input circuit currents during
overload condition 3)
ΣIIN SR -100 - 100 mA
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationPin Reliability in Overload
Data Sheet 155 V 1.0 2017-01
3.3 Pin Reliability in Overload
When receiving signals from higher voltage devices, low-voltage devices experience overload currents and
voltages that go beyond their own IO power supplies specification.
The following table defines overload conditions that will not cause any negative reliability impact if all the following
conditions are met:
full operation life-time is not exceeded
Operating Conditions are met for
pad supply levels
– temperature
If a pin current is out of the Operating Conditions but within the overload parameters, then the parameters
functionality of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still
possible in most cases but with relaxed parameters.
Note:An overload condition on one or more pins does not require a reset.
Table 3-2 Overload Parameters
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Input current on any digital pin
during overload condition
IIN -5 - 5 mA except LVDS pins
-15 1) -15
1) mA except LVDS pins;
limited to max. 20
pulses with 1ms pulse
length
Input current on LVDS pin
during overload condition
IINLVDS -3 - 3 mA
Absolute maximum sum of all
input circuit currents during
overload condition
IING -50 - 50 mA
Input current on analog input
pin during overload condition
IINANA -3 - 3 mA
-5 - 5 mA limited to 60h over
lifetime
Absolute sum of all ADC inputs
during overload condition
IINSCA -20 - 20 mA
Absolute maximum sum of all
input circuit currents during
overload condition
ΣIINS -100 - 100 mA
Signal voltage over/undershoot
at GPIOs
VOUS VSS - 2 - VEXT/FLEX
+ 2
V limited to 60h over
lifetime; Valid for LP,
MP, MP+, and MPR
pads
Inactive device pin current
during overload condtion 2)
IID -1 - 1 mA All power supply
voltages VDDx = 0
Sum of all inactive device pin
currents 2)
IIDS -100 - 100 mA
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationPin Reliability in Overload
Data Sheet 156 V 1.0 2017-01
Overload coupling factor for
digital inputs, negative 3)
KOVDN CC - 2*10-4 6*10-4 Overload injected on
GPIO non LVDS pad
and affecting neighbor
LP and A2 pads; -2mA
< IIN < 0mA
--1*10
-2 Overload injected on
GPIO non LVDS pad
and affecting neighbor
LP and A2 pads; -5mA
< IIN < -2mA
--1.7*10
-3 Overload injected on
GPIO non LVDS pad
and affecting neighbor
MP, MP+, and MPR
pads; -2mA < IIN <
0mA
--2*10
-2 Overload injected on
GPIO non LVDS pad
and affecting neighbor
MP, MP+, and MPR
pads; -5mA < IIN < -
2mA
- - 0.3 Overload injected on
LVDS pad and
affecting neighbor
LVDS pads
- - 0.93 coupling between pads
21.2 and 21.3
Overload coupling factor for
digital inputs, positive 3)
KOVDP CC--1*10
-5 Overload injected on
GPIO non LVDS pad
and affecting neighbor
GPIO non LVDS pads
--1*10
-4 Overload injected on
GPIO pad and
affecting neighbor
P32.0 pad
--5*10
-4 Overload injected on
LVDS pad and
affecting neighbor
LVDS pads
Table 3-2 Overload Parameters (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationPin Reliability in Overload
Data Sheet 157 V 1.0 2017-01
Note:DSADC input pins count as analog pins as they are overlaid with VADC pins.
Overload coupling factor for
analog inputs, negative
KOVAN CC--6*10
-4 4) Analog Inputs overlaid
with class LP pads or
pull down diagnostics;
-1mA < IIN < 0mA
--1*10
-2 Analog Inputs overlaid
with class LP pads or
pull down diagnostics;
-5mA < IIN < -1mA
--1*10
-4 else; -5mA < IIN < 0mA
Overload coupling factor for
analog inputs, positive
KOVAP CC--1*10
-5 5mA < IIN < 0mA
1) Reduced VADC / DSADC result accuracy and / or GPIO input levels (VIL and VIH) can differ from specified parameters.
2) Limitations for time and supply levels specified in this section are not valid for this parameter.
3) Overload is measured as increase of pad leakage caused by injection on neighbor pad.
4) For analogue inputs overlaid with DSADC function the VCM holdbuffer shall be enabled, in case DSADCs are enabled.
Table 3-3 PN-Junction Characteristics for positive Overload
Pad Type IIN =3mA IIN =5mA
F/A2 UIN =VDDP3 +0.5V UIN =VDDP3 +0.6V
LP / MP / MP+ / MPR UIN =VEXT / FLEX +0.75V UIN =VEXT / FLEX +0.8V
LVDSM UIN =VEXT +0.75V -
LVDSH UIN =VDDP3 +0.5V -
DUIN =VDDM +0.75V -
Table 3-4 PN-Junction Characteristics for negative Overload
Pad Type IIN =-3mA IIN =-5mA
F/A2 UIN =VSS -0.5V UIN =VSS -0.6V
LP / MP / MP+ / MPR UIN =VSS -0.75V UIN =VSS -0.8V
LVDSM UIN =VSS -0.75V -
LVDSH UIN =VSS -0.5V -
DUIN =VSS -0.75V -
Table 3-2 Overload Parameters (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationOperating Conditions
Data Sheet 158 V 1.0 2017-01
3.4 Operating Conditions
The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the
TC270 / TC275 / TC277. All parameters specified in the following tables refer to these operating conditions, unless
otherwise noticed.
Digital supply voltages applied to the TC270 / TC275 / TC277 must be static regulated voltages.
All parameters specified in the following tables refer to these operating conditions (see table below), unless
otherwise noticed in the Note / Test Condition column.
Table 3-5 Operating Conditions
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
SRI frequency fSRI SR--200 MHz
Max System Frequency fMAX SR--200 MHz
CPU0 Frequency fCPU0 SR--200 MHz
CPU1 Frequency fCPU1 SR--200 MHz
CPU2 Frequency fCPU2 SR--200 MHz
PLL output frequency fPLL SR 20 - 200 MHz
PLL_ERAY output frequency fPLLERAY SR 20 - 400 MHz
SPB frequency fSPB SR--100 MHz
ASCLIN fast frequency fASCLINF SR--200 MHz
ASCLIN slow frequency fASCLINS SR--100 MHz
Baud2 frequency fBAUD2 SR--200 MHz
Baud1 frequency fBAUD1 SR--100 MHz
FSI2 frequency fFSI2 SR--200 MHz
FSI frequency fFSI SR--100 MHz
GTM frequency fGTM SR--100 MHz
STM frequency fSTM SR--100 MHz
ERAY frequency fERAY SR--80 MHz
BBB frequency fBBB SR--100 MHz
MultiCAN frequency fCAN SR--100 MHz
Absolute sum of short circuit
currents of the device
ΣISC_D SR--100 mA
Ambient Temperature TA SR -40 - 125 °C valid for all SAK
products
-40 - 150 °C valid for all SAL
products
-40 - 170 °C valid for all SAL
products without
package
Junction Temperature TJ SR -40 - 150 °C valid for all SAK
products
-40 - 170 °C valid for all SAL
products
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationOperating Conditions
Data Sheet 159 V 1.0 2017-01
Core Supply Voltage 1) VDD SR 1.17 1.3 1.43 2) V Only required if
externally supplied
ADC analog supply voltage VDDM SR 2.97 5.0 5.5 3) V
Digital external supply voltage
for LP, MP, MP+ and LVDSM
pads and EVR 4)
VEXT SR 2.97 - 4.5 V 3.3V pad parameters
are valid
4.5 5.0 5.5
3) V 5V pad parameters are
valid
Digital supply voltage for Flex
port
VFLEX SR 2.97 - 4.5 V 3.3V pad parameters
are valid
4.5 5.0 5.5
3) V 5V pad parameters are
valid
Digital supply voltage for
LVDSH and A2 pads 5)
VDDP3 SR 2.97 3.3 3.63 6) V 3.3V pad parameters
are valid; only required
if externally supplied
Flash supply voltage 3.3V 1) VDDFL3 SR 2.97 3.3 3.63 V Only required if
externally supplied
Digital ground voltage VSS SR 0 - - V
Analog ground voltage for VDDM VSSM CC -0.1 0 0.1 V
Voltage to ensure defined pad
states 7)
VDDPPA CC 0.72 - - V A2 and LVDSH
1.4 - - V LP, MP, MP+, MPR
and LVDSM
Digital external supply voltage
for EVR and during Standby
mode
VEVRSB SR 2.97 - 5.5 V only available in BGA
package. VEVRSB is
bonded together with
VEXT supply pin in
LQFP package.
1) No external inductive load permissible if EVR is used. All VDD pins shall be connected together externally on the PCB.
2) Voltage overshoot to 1.69V is permissible, provided the duration is less than 2h cumulated. Reduced ADC accuracy and
leakage is increased.
3) Voltage overshoot to 6.5V is permissible, provided the duration is less than 2h cumulated. Reduced ADC accuracy and
leakage is increased.
4) All VEXT pins shall be connected together externally on the PCB.
5) All VDDP3 pins shall be connected together externally on the PCB.
6) Voltage overshoot to 4.29V is permissible, provided the duration is less than 2h cumulated. Reduced ADC accuracy and
leakage is increased.
7) This parameter is valid under the assumption the PORST signal is constantly at low level during the power-up/power-down
of VDDP3.
Table 3-5 Operating Conditions (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Data Sheet 160 V 1.0 2017-01
3.5 5 V / 3.3 V switchable Pads
Pad classes LP, MP, MP+, and MPR support both Automotive Level (AL) or TTL level (TTL) operation. Parameters
are defined for AL operation and degrade in TTL operation.
Table 3-6 Standard_Pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Pin capacitance (digital
inputs/outputs)
CIO CC - 6 10 pF
Spike filter always blocked
pulse duration
tSF1 CC - - 80 ns PORST only
Spike filter pass-through pulse
duration
tSF2 CC 220 - - ns PORST only
PORST pad output current 1)
1) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.
IPORST CC 11 - - mA VEXT = 3.0V; VPORST =
0.9V; TJ = 165°C
13 - - mA VEXT = 4.5V; VPORST =
1.0V
Table 3-7 Class LP 5V
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Input frequency fIN SR - - 75 MHz Hysteresis active
- - 150 MHz Hysteresis inactive
Input Hysteresis for LP pad 1) HYSLP CC 0.09 *
VEXT/FLEX
--VAL
0.075 *
VEXT/FLEX
- - V TTL
Input Leakage current for LP
pad
IOZLP CC -150 - 150 nA (0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-350 - 350 nA else
Input leakage current for P32.0 IOZP320 CC -4900 - 4900 nA (0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-9400 - 9400 nA (0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX); for TJ >
150°C
-5800 - 5800 nA else
-12000 - 12000 nA else; for
TJ > 150°C
Pull-up current for LP pad IPUHLP CC |30| - - µA VIHmin; AL
|43| - - µA VIHmin; TTL
--|107| µA
VILmax; AL and TTL
@neon
TC270 / TC275 / TC277 DC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Data Sheet 161 V 1.0 2017-01
Pull-down current for LP pad IPDLLP CC--|100| µAVIHmin; AL and TTL
|46| - - µA VILmax; AL
|21| - - µA VILmax; TTL
On-Resistance for LP pad,
weak driver 2)
RDSONLPW
CC
200 620 1040 Ohm PMOS/NMOS ;
IOH=0.5mA ;
IOL=0.5mA
On-Resistance for LP pad,
medium driver 2)
RDSONLPM
CC
50 155 260 Ohm PMOS/NMOS ;
IOH=2mA ; IOL=2mA
Rise / fall time for LP pad 3) tLP CC - - 95+2.1 *
CL
ns CL50pF ; pin out
driver=weak
--200+2.9 *
( CL - 50 )
ns CL50pF ; CL200pF ;
pin out driver=weak
- - 25+0.5 *
CL
ns CL50pF ; pin out
driver=medium
- - 50+0.75 *
( CL - 50 )
ns CL50pF ; CL200pF ;
pin out driver=medium
Input high voltage for LP pad VIHLP SR (0.73*VEX
T/FLEX)-
0.25
- - V Hysteresis active, AL
2.03 4) - - V Hysteresis active, TTL
Input low voltage for LP pad VILLP SR - - (0.52*VEX
T/FLEX)-
0.25
V Hysteresis active, AL
--0.8
5) V Hysteresis active, TTL
Input low / high voltage for LP
pad
VILHLP CC 1.85 - 3.0 V Hysteresis inactive;
not available for P14.2,
P14.4, and P15.1
Pad set-up time for LP pad tSET_LP CC--100 ns
Input leakage current for P02.1 IOZ021 CC -150 - 1030 nA (0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX); TJ >
150°C
-150 - 340 nA (0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX); TJ =
150°C
-420 - 1100 nA else;
TJ > 150°C
-350 - 380 nA else;
TJ = 150°C
Pull down current for P32_0 pin IPDLP320 CC--|105| µAVIHmin; AL and TTL
|41| - - µA VILmax; AL
|16| - - µA VILmax; TTL
Table 3-7 Class LP 5V (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Data Sheet 162 V 1.0 2017-01
Pull Up Current for P32_0 pin IPUHP320 CC |25| - - µA VIHmin; AL
|38| - - µA VIHmin; TTL
--|112| µA
VILmax; AL and TTL
Short Circuit current for LP pad
6)
ISC SR -10 - 10 mA absolute max value
(PSI5)
Deviation of symmetry for rising
and falling edges
SYM CC--20 %
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.
Table 3-8 Class LP 3.3V
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Input frequency fIN SR - - 50 MHz Hysteresis active
- - 100 MHz Hysteresis inactive
Input Hysteresis for LP pad 1) HYSLP CC 0.05 *
VEXT/FLEX
- - V AL and TTL
Input Leakage current for LP
pad
IOZLP CC -150 - 150 nA (0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-350 - 350 nA else
Input leakage current for P32.0 IOZP320 CC -4900 - 4900 nA (0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-9400 - 9400 nA (0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX); for TJ >
150 °C
-5800 - 5900 nA else
-12000 - 12000 nA else; for
TJ > 150°C
Pull-up current for LP pad IPUHLP CC |17| - - µA VIHmin; AL
|19| - - µA VIHmin; TTL
--|75| µA
VILmax; AL and TTL
Pull-down current for LP pad IPDLLP CC--|75| µAVIHmin; AL and TTL
|22| - - µA VILmax; AL
|11| - - µA VILmax; TTL
On-Resistance for LP pad,
weak driver 2)
RDSONLPW
CC
250 875 1500 Ohm ; NMOS/PMOS ;
IOH=0.25mA ;
IOL=0.25mA
Table 3-7 Class LP 5V (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Data Sheet 163 V 1.0 2017-01
On-Resistance for LP pad,
medium driver 2)
RDSONLPM
CC
70 235 400 Ohm ; NMOS/PMOS ;
IOH=1mA ; IOL=1mA
Rise / fall time for LP pad 3) tLP CC--150+3.4 *
CL
ns CL50pF ; pin out
driver=weak
--320+4.5 *
( CL - 50 )
ns CL50pF ; CL200pF ;
pin out driver=weak
- - 30+0.8*C
L
ns CL50pF ; pin out
driver=medium
- - 70+1.1 * (
CL - 50 )
ns CL50pF ; CL200pF ;
pin out driver=medium
Input high voltage for LP pad VIHLP SR (0.73*VEX
T/FLEX)-
0.25
- - V Hysteresis active, AL
1.6 4) - - V Hysteresis active, TTL
Input low voltage for LP pad VILLP SR - - (0.52*VEX
T/FLEX)-
0.25
V Hysteresis active, AL
--0.5
5) V Hysteresis active, TTL
Input low / high voltage for LP
pad
VILHLP CC 1.1 - 1.9 V Hysteresis inactive;
not available for P14.2,
P14.4, and P15.1
Pad set-up time for LP pad tSET_LP CC--100 ns
Input leakage current for P02.1 IOZ021 CC -150 - 920 nA (0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX); TJ >
150°C
-150 - 330 nA (0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX); TJ =
150°C
-360 - 1000 nA else;
TJ > 150°C
-350 - 375 nA else;
TJ = 150°C
Pull down current for P32_0 pin IPDLP320 CC--|80| µAVIHmin; AL and TTL
|17| - - µA VILmax; AL
|6| - - µA VILmax; TTL
Pull Up Current for P32_0 pin IPUHP320 CC |12| - - µA VIHmin; AL
|14| - - µA VIHmin; TTL
--|80| µA
VILmax; AL and TTL
Short Circuit current for LP pad
6)
ISC SR -10 - 10 mA absolute max value
(PSI5)
Deviation of symmetry for rising
and falling edges
SYM CC--20 %
Table 3-8 Class LP 3.3V (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Data Sheet 164 V 1.0 2017-01
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.
Table 3-9 Class MP 5V
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Input frequency fIN SR - - 75 MHz Hysteresis active
- - 150 MHz Hysteresis inactive
Input Hysteresis for MP pad 1) HYSMP CC 0.09 *
VEXT/FLEX
--VAL
0.075 *
VEXT/FLEX
- - V TTL
Input Leakage current for MP
pad
IOZMP CC -500 - 500 nA (0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-1000 - 1000 nA else
Pull-up current for MP pad IPUHMP CC |30| - - µA VIHmin; AL
|43| - - µA VIHmin; TTL
--|107| µA
VILmax; AL and TTL
Pull-down current for MP pad IPDLMP CC--|100| µAVIHmin; AL and TTL
|46| - - µA VILmax; AL
|21| - - µA VILmax; TTL
On-Resistance for MP pad,
weak driver 2)
RDSONMPW
CC
200 620 1040 Ohm PMOS/NMOS ;
IOH=0.5mA ;
IOL=0.5mA
On-Resistance for MP pad,
medium driver 2)
RDSONMPM
CC
50 155 260 Ohm PMOS/NMOS ;
IOH=2mA ; IOL=2mA
On-Resistance for MP pad,
strong driver 2)
RDSONMPS
CC
20 75 130 Ohm PMOS/NMOS ;
IOH=8mA ; IOL=8mA
@neon
TC270 / TC275 / TC277 DC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Data Sheet 165 V 1.0 2017-01
Rise / fall time for MP pad 3) tMP CC - - 95+2.1*C
L
ns CL50pF ; pin out
driver=weak
--200+2.9*(
CL-50)
ns CL50pF ; CL200pF ;
pin out driver=weak
- - 25+0.5*C
L
ns CL50pF ; pin out
driver=medium
- - 50 + 0.75
* ( CL - 50
)
ns CL50pF ; CL200pF ;
pin out driver=medium
- - 17.5+0.25
*CL
ns CL50pF ;
edge=medium ; pin out
driver=strong
- - 30+0.3*(
CL-50)
ns CL50pF ; CL200pF ;
edge=medium ; pin out
driver=strong
--7+0.2*
CL ns CL50pF ; edge=sharp
; pin out driver=strong
- - 17+0.3*(
CL-50)
ns CL50pF ; CL200pF ;
edge=sharp ; pin out
driver=strong
Input high voltage for MP pad VIHMP SR (0.73*VEX
T/FLEX)-
0.25
- - V Hysteresis active, AL
2.03 4) - - V Hysteresis active, TTL
Input low voltage for MP pad VILMP SR - - (0.52*VEX
T/FLEX)-
0.25
V Hysteresis active, AL
--0.8
5) V Hysteresis active, TTL
Input low / high voltage for MP
pad
VILHMP CC 1.85 - 3.0 V Hysteresis inactive
Pad set-up time for MP pad tSET_MP CC--100 ns
Short Circuit current for MP pad
6)
ISC SR -10 - 10 mA absolute max value
(PSI5)
Deviation of symmetry for rising
and falling edges
SYM CC--20 %
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.
Table 3-9 Class MP 5V (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Data Sheet 166 V 1.0 2017-01
Table 3-10 Class MP 3.3V
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Input frequency fIN SR - - 50 MHz Hysteresis active
- - 100 MHz Hysteresis inactive
Input Hysteresis for MP pad 1) HYSMP CC 0.05 *
VEXT/FLEX
- - V AL and TTL
Input Leakage current for MP
pad
IOZMP CC -500 - 500 nA (0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-1000 - 1000 nA else
Pull-up current for MP pad IPUHMP CC |17| - - µA VIHmin; AL
|19| - - µA VIHmin; TTL
--|75| µA
VILmax; AL and TTL
Pull-down current for MP pad IPDLMP CC--|75| µAVIHmin; AL and TTL
|22| - - µA VILmax; AL
|11| - - µA VILmax; TTL
On-Resistance for MP pad,
weak driver 2)
RDSONMPW
CC
250 875 1500 Ohm ; NMOS/PMOS ;
IOH=0.25mA ;
IOL=0.25mA
On-Resistance for MP pad,
medium driver 2)
RDSONMPM
CC
70 235 400 Ohm ; NMOS/PMOS ;
IOH=1mA ; IOL=1mA
On-Resistance for MP pad,
strong driver 2)
RDSONMPS
CC
20 110 200 Ohm PMOS/NMOS ;
IOH=4mA ; IOL=4mA
Rise / fall time for MP pad 3) tMP CC--150+3.4*
CL
ns CL50pF ; pin out
driver=weak
--320+4.5*(
CL-50)
ns CL50pF ; CL200pF ;
pin out driver=weak
- - 30+0.8*C
L
ns CL50pF ; pin out
driver=medium
- - 70+1.1*(
CL-50)
ns CL50pF ; CL200pF ;
pin out driver=medium
- - 32.5+0.35
*CL
ns CL50pF ;
edge=medium ; pin out
driver=strong
- - 50+0.45*(
CL-50)
ns CL50pF ; CL200pF ;
edge=medium ; pin out
driver=strong
- - 14.5+0.35
*CL
ns CL50pF ; edge=sharp
; pin out driver=strong
- - 32+0.5*(
CL-50)
ns CL50pF ; CL200pF ;
edge=sharp ; pin out
driver=strong
@neon
TC270 / TC275 / TC277 DC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Data Sheet 167 V 1.0 2017-01
Input high voltage for MP pad VIHMP SR (0.73*VEX
T/FLEX)-
0.25
- - V Hysteresis active, AL
1.6 4) - - V Hysteresis active, TTL
Input low voltage for MP pad VILMP SR - - (0.52*VEX
T/FLEX)-
0.25
V Hysteresis active, AL
--0.5
5) V Hysteresis active, TTL
Input low / high voltage for MP
pad
VILHMP CC 1.1 - 1.9 V Hysteresis inactive
Pad set-up time for MP pad tSET_MP CC--100 ns
Short Circuit current for MP pad
6)
ISC SR -10 - 10 mA absolute max value
(PSI5)
Deviation of symmetry for rising
and falling edges
SYM CC--20 %
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.
Table 3-11 Class MP+ 5V
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Input frequency fIN SR - - 75 MHz Hysteresis active
- - 150 MHz Hysteresis inactive
Input hysteresis for MP+ pad 1) HYSMPP
CC
0.09 *
VEXT/FLEX
--VAL
0.075 *
VEXT/FLEX
- - V TTL
Input leakage current for MP+
pad
IOZMPP CC -750 - 750 nA (0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-1500 - 1500 nA else
Pull-up current for MP+ pad IPUHMPP CC |30| - - µA VIHmin; AL
|43| - - µA VIHmin; TTL
--|107| µA
VILmax; AL and TTL
Pull-down current for MP+ pad IPDLMPP CC--|100| µAVIHmin; AL and TTL
|46| - - µA VILmax; AL
|21| - - µA VILmax; TTL
Table 3-10 Class MP 3.3V (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Data Sheet 168 V 1.0 2017-01
On-resistance for MP+ pad,
weak driver 2)
RDSONMPPW
CC
200 620 1040 Ohm PMOS/NMOS ;
IOH=0.5mA ;
IOL=0.5mA
On-resistance for MP+ pad,
medium driver 2)
RDSONMPPM
CC
50 155 260 Ohm PMOS/NMOS ;
IOH=2mA ; IOL=2mA
On-resistance for MP+ pad,
strong driver 2)
RDSONMPPS
CC
20 55 90 Ohm PMOS/NMOS ;
IOH=8mA ; IOL=8mA
Rise/fall time for MP+ pad 3) tMPP CC - - 95+2.1*C
L
ns CL50pF ; pin out
driver=weak
--200+2.9*(
CL-50)
ns CL50pF ; CL200pF ;
pin out driver=weak
- - 25+0.5*C
L
ns CL50pF ; pin out
driver=medium
- - 50+0.75*(
CL-50)
ns CL50pF ; CL200pF ;
pin out driver=medium
--9+0.16*
C
L
ns CL50pF ;
edge=medium ; pin out
driver=strong
- - 17+0.2*(
CL-50)
ns CL50pF ; CL200pF ;
edge=medium ; pin out
driver=strong
--4+0.16*
C
L
ns CL50pF ; edge=sharp
; pin out driver=strong
- - 12+0.21*(
CL-50)
ns CL50pF ; CL200pF ;
edge=sharp ; pin out
driver=strong
- - 5 ns from 0.8V to 2.0V
(RMII) ; CL=25pF ;
edge=sharp ; pin out
driver=strong
--4.5 ns
CL=15pF ; edge=sharp
; pin out driver=strong
Input high voltage for MP+ pad VIHMPP SR (0.73*VEX
T/FLEX)-
0.25
- - V Hysteresis active, AL
2.03 4) - - V Hysteresis active, TTL
Input low voltage for MP+ pad VILMPP SR - - (0.52*VEX
T/FLEX)-
0.25
V Hysteresis active, AL
--0.8
5) V Hysteresis active, TTL
Input low / high voltage for MP+
pad
VILHMPP CC 1.85 - 3.0 V Hysteresis inactive
Table 3-11 Class MP+ 5V (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Data Sheet 169 V 1.0 2017-01
Pad set-up time for MP+ pad tSET_MPP CC--100 ns
Short circuit current for MP+
pad 6)
ISCMPP SR -10 - 10 mA absolute max value
(PSI5)
Deviation of symmetry for rising
and falling edges
SYM CC--20 %
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.
Table 3-12 Class MP+ 3.3V
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Input frequency fIN SR - - 50 MHz Hysteresis active
- - 100 MHz Hysteresis inactive
Input hysteresis for MP+ pad 1) HYSMPP
CC
0.05 *
VEXT/FLEX
- - V AL and TTL
Input leakage current for MP+
pad
IOZMPP CC -750 - 750 nA (0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-1500 - 1500 nA else
Pull-up current for MP+ pad IPUHMPP CC |17| - - µA VIHmin; AL
|19| - - µA VIHmin; TTL
--|75| µA
VILmax; AL and TTL
Pull-down current for MP+ pad IPDLMPP CC--|75| µAVIHmin; AL and TTL
|22| - - µA VILmax; AL
|11| - - µA VILmax; TTL
On-resistance for MP+ pad,
weak driver 2)
RDSONMPPW
CC
250 875 1500 Ohm ; NMOS/PMOS ;
IOH=0.25mA ;
IOL=0.25mA
On-resistance for MP+ pad,
medium driver 2)
RDSONMPPM
CC
70 235 400 Ohm ; NMOS/PMOS ;
IOH=1mA ; IOL=1mA
On-resistance for MP+ pad,
strong driver 2)
RDSONMPPS
CC
20 75 130 Ohm PMOS/NMOS ;
IOH=4mA ; IOL=4mA
Table 3-11 Class MP+ 5V (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Data Sheet 170 V 1.0 2017-01
Rise/fall time for MP+ pad 3) tMPP CC--150+3.4*
CL
ns CL50pF ; pin out
driver=weak
--320+4.5*(
CL-50)
ns CL50pF ; CL200pF ;
pin out driver=weak
- - 30+0.8*C
L
ns CL50pF ; pin out
driver=medium
- - 70+1.1*(
CL-50)
ns CL50pF ; CL200pF ;
pin out driver=medium
- - 20+0.2*C
L
ns CL50pF ;
edge=medium ; pin out
driver=strong
- - 30+0.3*(
CL-50)
ns CL50pF ; CL200pF ;
edge=medium ; pin out
driver=strong
- - 13+0.2*C
L
ns CL50pF ; edge=sharp
; pin out driver=strong
- - 23+0.3*(
CL-50)
ns CL50pF ; CL200pF ;
edge=sharp ; pin out
driver=strong
- - 5 ns from 0.8V to 2.0V
(RMII) ; CL=25pF ;
edge=sharp ; pin out
driver=strong
- - 4.5 ns from 0.2 * VEXT/FLEX to
0.8 * VEXT/FLEX;
CL=15pF ; edge=sharp
; pin out driver=strong
Input high voltage for MP+ pad VIHMPP SR (0.73*VEX
T/FLEX)-
0.25
- - V Hysteresis active, AL
1.6 4) - - V Hysteresis active, TTL
Input low voltage for MP+ pad VILMPP SR - - (0.52*VEX
T/FLEX)-
0.25
V Hysteresis active, AL
--0.5
5) V Hysteresis active, TTL
Input low / high voltage for MP+
pad
VILHMPP CC 1.1 - 1.9 V Hysteresis inactive
Pad set-up time for MP+ pad tSET_MPP CC--100 ns
Short circuit current for MP+
pad 6)
ISCMPP SR -10 - 10 mA absolute max value
(PSI5)
Deviation of symmetry for rising
and falling edges
SYM CC--20 %
Table 3-12 Class MP+ 3.3V (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Data Sheet 171 V 1.0 2017-01
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.
Table 3-13 Class MPR 5V
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Input frequency fIN SR - - 75 MHz Hysteresis active
- - 150 MHz Hysteresis inactive
Input Hysteresis for MPR pads
1)
HYSMPR
CC
0.09 *
VEXT/FLEX
--VAL
0.075*
VEXT/FLEX
- - V TTL
Input leakage current class
MPR
IOZMPR CC -750 - 750 nA (0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-1500 - 1500 nA else
Pull-up current IPUHMPR CC |30| - - µA VIHmin; AL
|43| - - µA VIHmin; TTL
--|107| µA
VILmax; AL and TTL
Pull-down current IPDLMPR CC--|100| µAVIHmin; AL and TTL
|46| - - µA VILmax; AL
|21| - - µA VILmax; TTL
On-resistance of the MPR pad,
weak driver 2)
RDSONMPRW
CC
200 620 1040 Ohm PMOS/NMOS ;
IOH=0.5mA ;
IOL=0.5mA
On-resistance of the MPR pad,
medium driver 2)
RDSONMPRM
CC
50 155 260 Ohm PMOS/NMOS ;
IOH=2mA ; IOL=2mA
On-resistance of the MPR pad,
strong driver 2)
RDSONMPRS
CC
20 55 90 Ohm PMOS/NMOS ;
IOH=8mA ; IOL=8mA
@neon
TC270 / TC275 / TC277 DC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Data Sheet 172 V 1.0 2017-01
Rise/fall time 3) tMPR CC - - 95+2.1*C
L
ns CL50pF ; pin out
driver=weak
--200+2.9*(
CL-50)
ns CL50pF ; CL200pF ;
pin out driver=weak
- - 25+0.5*C
L
ns CL50pF ; pin out
driver=medium
- - 50+0.75*(
CL-50)
ns CL50pF ; CL200pF ;
pin out driver=medium
--9+0.16*
C
L
ns CL0pF ; CL50pF ;
edge=medium ; pin out
driver=strong
- - 17+0.2*(
CL-50)
ns CL50pF ; CL200pF ;
edge=medium ; pin out
driver=strong
--4+0.16*
C
L
ns CL50pF ; edge=sharp
; pin out driver=strong
- - 12+0.21*(
CL-50)
ns CL50pF ; CL200pF ;
edge=sharp ; pin out
driver=strong
- - 5 ns from 0.8V to 2.0V
(RMII) ; CL=25pF ;
edge=sharp ; pin out
driver=strong
- - 4.5 ns from 0.2 * VEXT/FLEX to
0.8 * VEXT/FLEX;
CL=15pF ; edge=sharp
; pin out driver=strong
Input high voltage, class MPR
pads
VIHMPR SR (0.73*VEX
T/FLEX)-
0.25
- - V Hysteresis active, AL
2.03 4) - - V Hysteresis active, TTL
Input low voltage, class MPR
pads
VILMPR SR - - (0.52*VEX
T/FLEX)-
0.25
V Hysteresis active, AL
--0.8
5) V Hysteresis active, TTL
Input low / high voltage, class
MPR pads
VILHMPR SR 1.2 - 2.3 V Hysteresis inactive
Pad set-up time tSET_MPR CC--100 ns
Short circuit current Class MPR ISC SR -10 - 10 mA absolute max value
(PSI5)
Deviation of symmetry for rising
and falling edges
SYM CC--20 %
Table 3-13 Class MPR 5V (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Data Sheet 173 V 1.0 2017-01
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
Table 3-14 Class MPR 3.3V
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Input frequency fIN SR - - 50 MHz Hysteresis active
- - 100 MHz Hysteresis inactive
Input Hysteresis for MPR pads
1)
HYSMPR
CC
0.05 *
VEXT/FLEX
- - V AL and TTL
Input leakage current class
MPR
IOZMPR CC -750 - 750 nA (0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-1500 - 1500 nA else
Pull-up current IPUHMPR CC |17| - - µA VIHmin; AL
|19| - - µA VIHmin; TTL
--|75| µA
VILmax; AL and TTL
Pull-down current IPDLMPR CC--|75| µAVIHmin; AL and TTL
|22| - - µA VILmax; AL
|11| - - µA VILmax; TTL
On-resistance of the MPR pad,
weak driver 2)
RDSONMPRW
CC
250 875 1500 Ohm ; NMOS/PMOS ;
IOH=0.25mA ;
IOL=0.25mA
On-resistance of the MPR pad,
medium driver 2)
RDSONMPRM
CC
70 235 400 Ohm ; NMOS/PMOS ;
IOH=1mA ; IOL=1mA
On-resistance of the MPR pad,
strong driver 2)
RDSONMPRS
CC
20 75 130 Ohm PMOS/NMOS ;
IOH=4mA ; IOL=4mA
@neon
TC270 / TC275 / TC277 DC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Data Sheet 174 V 1.0 2017-01
Rise/fall time 3) tMPR CC--150+3.4*
CL
ns CL50pF ; pin out
driver=weak
--320+4.5*(
CL-50)
ns CL50pF ; CL200pF ;
pin out driver=weak
- - 30+0.8*C
L
ns CL50pF ; pin out
driver=medium
- - 70+1.1*(
CL-50)
ns CL50pF ; CL200pF ;
pin out driver=medium
- - 20+0.2*C
L
ns CL0pF ; CL50pF ;
edge=medium ; pin out
driver=strong
- - 30+0.3*(
CL-50)
ns CL50pF ; CL200pF ;
edge=medium ; pin out
driver=strong
- - 13+0.2*C
L
ns CL50pF ; edge=sharp
; pin out driver=strong
- - 23+0.3*(
CL-50)
ns CL50pF ; CL200pF ;
edge=sharp ; pin out
driver=strong
- - 5 ns from 0.8V to 2.0V
(RMII) ; CL=25pF ;
edge=sharp ; pin out
driver=strong
- - 4.5 ns from 0.2 * VEXT/FLEX to
0.8 * VEXT/FLEX;
CL=15pF ; edge=sharp
; pin out driver=strong
Input high voltage, class MPR
pads
VIHMPR SR (0.73*VEX
T/FLEX)-
0.25
- - V Hysteresis active, AL
1.6 4) - - V Hysteresis active, TTL
Input low voltage, class MPR
pads
VILMPR SR - - (0.52*VEX
T/FLEX)-
0.25
V Hysteresis active, AL
--0.5
5) V Hysteresis active, TTL
Input low / high voltage, class
MPR pads
VILHMPR SR 0.8 - 1.7 V Hysteresis inactive
Pad set-up time tSET_MPR CC--100 ns
Short circuit current Class MPR ISC SR -10 - 10 mA absolute max value
(PSI5)
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
Table 3-14 Class MPR 3.3V (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Data Sheet 175 V 1.0 2017-01
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
Table 3-15 Class S
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Input frequency fIN SR - - 75 MHz Hysteresis active
- - 150 MHz Hysteresis inactive
Input Hysteresis for S pad 1)
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
HYSS CC 0.3 - - V
Pull-up current for S pad IPUHS CC |30| - - µA VIHmin
--|107| µAVILmax
Pull-down current for S pad IPDLS CC--|100| µAVIHmin
|46| - - µA VILmax
Input Leakage current Class S IOZS CC -350 - 350 nA Analog Inputs with pull
down diagnostics
-150 - 150 nA else
Input voltage high for S pad VIHS SR - - (0.73*VDD
M)-0.25
V Hysteresis active
Input voltage low for S pad VILS SR (0.52*VDD
M)-0.25
- - V Hysteresis active
Input low threshold variation for
S pad 2)
2) VILSD is implemented to ensure J2716 specification. For details of dedicated pins please see AP32286 for details.
VILSD SR -50 - 50 mV max. variation of 1ms;
VDDM=constant
Input capacitance for S pad CINS CC--10 pF
Pad set-up time for S pad tSETS CC--100 ns
Table 3-16 Class I 5V
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Input frequency fIN SR - - 75 MHz Hysteresis active
- - 150 MHz Hysteresis inactive
Input Hysteresis for I pad 1) HYSI CC 0.07 *
VEXT/FLEX
--VPORST
pad only
0.09 *
VEXT/FLEX
--VAL
0.075 *
VEXT/FLEX
- - V TTL
Pull-up current for I pad IPUHI CC |30| - - µA VIHmin; AL
|43| - - µA VIHmin; TTL
--|107| µA
VILmax; AL and TTL
@neon PORST PORST
TC270 / TC275 / TC277 DC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Data Sheet 176 V 1.0 2017-01
Pull-down current for I pad IPDLI CC--|100| µAVIHmin; AL and TTL
|46| - - µA VILmax; AL
|21| - - µA VILmax; TTL
Input Leakage Current for I pad IOZI CC -150 - 150 nA (0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-350 - 350 nA else
Input high voltage for I pad VIHI SR 2.03 2) - - V Hysteresis active, TTL
(0.73*VEX
T/FLEX)-
0.25
- - V Hysteresis active; AL;
not available for the
PORST pad
Input low voltage for I pad VILI SR--0.8 3) V Hysteresis active, TTL
- - (0.52*VEX
T/FLEX)-
0.25
V Hysteresis active; AL;
not available for the
PORST pad
Input low / high voltage for I pad VILHI CC 1.85 - 3.0 V Hysteresis inactive
Pad set-up time for I pad tSETI CC--100 ns
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) VIHx = 0.27 * VEXT/FLEX + 0.545V
3) VILx = 0.17 * VEXT/FLEX
Table 3-17 Class I 3.3V
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Input frequency fIN SR - - 50 MHz Hysteresis active
- - 100 MHz Hysteresis inactive
Input Hysteresis for I pad 1) HYSI CC 0.045 *
VEXT/FLEX
--VPORST
pad only
0.05 *
VEXT/FLEX
- - V AL and TTL
Pull-up current for I pad IPUHI CC |17| - - µA VIHmin; AL
|19| - - µA VIHmin; TTL
--|75| µA
VILmax; AL and TTL
Pull-down current for I pad IPDLI CC--|75| µAVIHmin; AL and TTL
|22| - - µA VILmax; AL
|11| - - µA VILmax; TTL
Input Leakage Current for I pad IOZI CC -150 - 150 nA (0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-350 - 350 nA else
Table 3-16 Class I 5V (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon PORST
TC270 / TC275 / TC277 DC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Data Sheet 177 V 1.0 2017-01
Input high voltage for I pad VIHI SR 1.6 2) - - V Hysteresis active, TTL
(0.73*VEX
T/FLEX)-
0.25
- - V Hysteresis active; AL;
not available for the
PORST pad
Input low voltage for I pad VILI SR--0.5 3) V Hysteresis active, TTL
- - (0.52*VEX
T/FLEX)-
0.25
V Hysteresis active; AL;
not available for the
PORST pad
Input low / high voltage for I pad VILHI CC 1.1 - 1.9 V Hysteresis inactive
Pad set-up time for I pad tSETI CC--100 ns
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) VIHx = 0.27 * VEXT/FLEX + 0.545V
3) VILx = 0.17 * VEXT/FLEX
Table 3-18 Driver Mode Selection for LP Pads
PDx.2 PDx.1 PDx.0 Port Functionality Driver Setting
X X 0 Speed grade 1 medium (LPm)
X X 1 Speed grade 2 weak (LPw)
Table 3-19 Driver Mode Selection for MP / MP+ Pads
PDx.2 PDx.1 PDx.0 Port Functionality Driver Setting
X 0 0 Speed grade 1 Strong sharp edge
(MPss / MP+ss / MPRss)
X 0 1 Speed grade 2 Strong medium edge (MPsm / MP+sm)
X 1 0 Speed grade 3 medium (MPm / MP+m / MPRm)
X 1 1 Speed grade 4 weak (MPw / MP+w / MPRw)
Table 3-17 Class I 3.3V (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical Specification3.3 V only Pads
Data Sheet 178 V 1.0 2017-01
3.6 3.3 V only Pads
Pad classes LP, MP and MP+ support both Automotive Level (AL) or TTL level (TTL) operation. Parameters are
defined for AL operation and degrade in TTL operation.
Table 3-20 Class A2
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Input frequency fIN SR--160 MHz
Input Hysteresis for A2 pad 1) HYSA2 CC 0.1 *
VDDP3
- - V TTL;else
0.06 *
VDDP3
- - V valid for P21.6 and
P21.7
Input Leakage current for A2
pad
IOZA2 CC -300 - 300 nA (0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-800 - 500 nA else
Pull-up current for A2 pad IPUHA2 CC--|100| µAVIHmin
|25| - - µA VILmax
Pull-down current for A2 pad IPDLA2 CC |23| - - µA VIHmin
--|100| µAVILmax
On-Resistance for A2 pad,
weak driver 2)
RDSONA2W
CC
100 200 325 Ohm PMOS/NMOS ;
IOH=0.5mA ;
IOL=0.5mA
On-Resistance for A2 pad,
medium driver 2)
RDSONA2M
CC
40 70 100 Ohm PMOS/NMOS ;
IOH=2mA ; IOL=2mA
On-Resistance for A2 pad,
strong driver 2)
RDSONA2S
CC
20 35 50 Ohm PMOS/NMOS ;
IOH=8mA ; IOL=8mA
Rise/fall time for A2 pad 3) tA2 CC - - 20+0.8*C
L
ns CL50pF ; pin out
driver=weak
- - 17.5+0.85
*CL
ns CL50pF ; CL200pF ;
pin out driver=weak
- - 12+0.16*
CL
ns CL50pF ; pin out
driver=medium
- - 11.5+0.17
*CL
ns CL50pF ; CL200pF ;
pin out driver=medium
--6+0.06*
C
L
ns CL50pF ;
edge=medium ; pin out
driver=strong
--5.5+0.07*
CL
ns CL50pF ; CL200pF ;
edge=medium ; pin out
driver=strong
--0.0+0.12*
CL
ns CL50pF ; edge=sharp
; pin out driver=strong
--0.0+0.12*
CL
ns CL50pF ; CL200pF ;
edge=sharp ; pin out
driver=strong
@neon
TC270 / TC275 / TC277 DC-Step
Electrical Specification3.3 V only Pads
Data Sheet 179 V 1.0 2017-01
Input high voltage for A2 pad VIHA2 SR 2.04 4) - - V TTL;valid for all A2
pads except
TMS/DAP1, TRST,
and TCK/DAP0
0.7 *
VDDP3
- - V valid for TMS/DAP1,
TRST, and TCK/DAP0
Input low voltage for A2 pad VILA2 SR--0.8 5) V TTL;valid for all A2
pads except
TMS/DAP1, TRST,
and TCK/DAP0
--0.3 *
VDDP3
V valid for TMS/DAP1,
TRST, and TCK/DAP0
Pad set-up time for A2 pad tSETA2 CC--100 ns
Deviation of symmetry for rising
and falling edges
SYM CC--20 %
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VDDP3.
4) VIHx = 0.57 * VDDP3 - 0.03V
5) VILx = 0.25 * VDDP3 + 0.058V
Table 3-21 Driver Mode Selection for A2 Pads
PDx.2 PDx.1 PDx.0 Port Functionality Driver Setting
X 0 0 Speed grade 1 Strong sharp edge
X 0 1 Speed grade 2 Strong medium edge
X 1 0 Speed grade 3 medium
X 1 1 Speed grade 4 weak
Table 3-22 Driver Mode Selection for F Pads
PDx.2 PDx.1 PDx.0 Port Functionality Driver Setting
X 0 0 Speed grade 1 Reduced Strong sharp edge
X 0 1 Speed grade 2 Reduced Strong medium edge
X 1 0 Speed grade 3 medium
X 1 1 Speed grade 4 weak
Table 3-20 Class A2 (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationHigh performance LVDS Pads (LVDSH)
Data Sheet 180 V 1.0 2017-01
3.7 High performance LVDS Pads (LVDSH)
This LVDS pad type is used for the high speed chip to chip communication inferface of the new TC270 / TC275 /
TC277. It compose out of a LVDSH pad and a Class F pad.
This pad combination is always supplied by the 3.3V supply rail.
Table 3-23 Class F
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Input frequency fIN SR--75 MHz
Input Hysteresis for F pad 1) HYSF CC 0.1 *
VDDP3
- - V TTL
Input Leakage Current for F
pad
IOZF CC -1000 - 1000 nA (0.1*VDDP3) < VIN <
(0.9*VDDP3); valid for
P21.2 and P21.3; TJ =
150°C
-1500 - 1500 nA (0.1*VDDP3) < VIN <
(0.9*VDDP3); valid for
P21.2 and P21.3; TJ =
170°C
-300 - 300 nA (0.1*VDDP3) < VIN <
(0.9*VDDP3); valid for
P21.4 and P21.5
-2000 - 2000 nA else; valid for P21.2
and P21.3; TJ = 150°C
-3000 - 3000 nA else; valid for P21.2
and P21.3; TJ = 170°C
-600 - 600 nA else; valid for P21.4
and P21.5
Pull-up current for F pad IPUHF CC |25| - - µA VIHmin
--|100| µAVILmax
Pull-down current for class F
pads
IPDLF CC--|100| µAVIHmin
|25| - - µA VILmax
On resistance for F pad, weak
driver 2)
RDSONFW
CC
100 200 325 Ohm PMOS/NMOS ;
IOH=0.5mA ;
IOL=0.5mA
On resistance for F pad,
medium driver 2)
RDSONFM
CC
40 70 100 Ohm PMOS/NMOS ;
IOH=2mA ; IOL=2mA
On resistance for F pad, strong
driver 2)
RDSONFS CC 20 50 80 Ohm PMOS/NMOS ;
IOH=4mA ; IOL=4mA
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationHigh performance LVDS Pads (LVDSH)
Data Sheet 181 V 1.0 2017-01
CL= 2.5 pF for all LVDSH parameters.
Rise/fall time for F pad 3) trfF CC - - 20+0.8*C
L
ns CL50pF ; pin out
driver=weak
- - 17.5+0.85
*CL
ns CL50pF ; CL200pF ;
pin out driver=weak
- - 12+0.16*
CL
ns CL50pF ; pin out
driver=medium
- - 11.5+0.17
*CL
ns CL50pF ; CL200pF ;
pin out driver=medium
--7+0.16*
C
L
ns CL50pF ;
edge=medium ; pin out
driver=reduced strong
--6.5+0.17*
CL
ns CL50pF ; CL200pF ;
edge=meduim ; pin out
driver>reduced strong
--4+0.16*
C
L
ns CL50pF ; edge=sharp
; pin out
driver=reduced strong
--3.5+0.17*
CL
ns CL50pF ; CL200pF ;
edge=sharp ; pin out
driver=reduced strong
Input high voltage for F pad VIHF SR 2.04 4) - - V TTL
Input low voltage for F pad VILF SR--0.8 5) V TTL
Pad set-up time for F pad tSETF CC--100 ns
Deviation of symmetry for rising
and falling edges
SYM CC--20 %
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VDDP3.
4) VIHx = 0.57 * VDDP3 - 0.03V
5) VILx = 0.25 * VDDP3 + 0.058V
Table 3-24 LVDSH - IEEE standard LVDS general purpose link (GPL)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Output impedance R0 CC 40 - 140 Ohm Vcm = 1.0 V and 1.4 V
Rise time 1) trise20 CC - - 0.5 ns ZL = 100 Ohm ±5%
@2 pF
Fall time 1) tfall20 CC - - 0.5 ns ZL = 100 Ohm ±5% @
2 pF
Output differential voltage VOD CC 250 - 400 mV RT = 100 Ohm ±5%
Table 3-23 Class F (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationHigh performance LVDS Pads (LVDSH)
Data Sheet 182 V 1.0 2017-01
Output voltage high VOH CC - - 1475 mV RT = 100 Ohm ±5%
(400 mV/2) + 1275 mV
Output voltage low VOL CC 925 - - mV RT = 100 Ohm ±5%
Output offset (Common mode)
voltage
VOS CC 1125 - 1275 mV RT = 100 Ohm ±5%
Input voltage range VI SR 0 - 1600 mV Driver ground potential
difference < 925 mV;
RT = 100 Ohm ±10%
0 - 2000 mV Driver ground potential
difference < 925 mV;
RT = 100 Ohm ±20%
Input differential threshold Vidth SR -100 - 100 mV Driver ground potential
difference < 925 mV
Delta output impedance dR0 SR - - 10 % Vcm = 1.0 V and 1.4 V
(mismatch Pd and Pn)
Change in VOS between 0 and
1
dVOS CC - - 25 mV RT = 100 Ohm ±5%
Change in Vod between 0 and
1
dVod CC - - 25 mV RT = 100 Ohm ±5%
Duty cycle tduty CC 45 - 55 %
1) Rise / fall times are defined for 20% - 80% of VOD
Table 3-25 LVDSH - IEEE standard LVDS reduced link (REDL)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Output impedance R0 CC 40 - 140 Ohm Vcm = 1.0 V and 1.4 V
Output differential voltage VOD CC 150 - 250 mV RT = 100 Ohm ±5%
Output voltage high VOH CC - - 1375 mV RT = 100 Ohm ±5%
Output voltage low VOL CC 1025 - - mV RT = 100 Ohm ±5%
Output offset (Common mode)
voltage
VOS CC 1125 - 1275 mV RT = 100 Ohm ±5%
Input voltage range VI SR 825 - 1575 mV Driver ground potential
difference < 50 mV
Input differential threshold Vidth SR -100 - 100 mV Driver ground potential
difference < 50 mV
Change in VOS between 0 and
1
dVOS CC - - 25 mV RT = 100 Ohm ±5%
Change in Vod between 0 and
1
dVod CC - - 25 mV RT = 100 Ohm ±5%
Duty cycle tduty CC 45 - 55 %
Table 3-24 LVDSH - IEEE standard LVDS general purpose link (GPL) (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationHigh performance LVDS Pads (LVDSH)
Data Sheet 183 V 1.0 2017-01
default after start-up = CMOS function
VOD Fall time 1) tfall10 CC - - 0.5 ns ZL = 100 Ohm ±5% @
2pF
VOD Rise time 1) trise10 CC - - 0.5 ns ZL = 100 Ohm ±5% @
2pF
1) Rise / fall times are defined for 10% - 90% of VOD
Table 3-25 LVDSH - IEEE standard LVDS reduced link (REDL) (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationMedium performance LVDS Pads (LVDSM)
Data Sheet 184 V 1.0 2017-01
3.8 Medium performance LVDS Pads (LVDSM)
This LVDS pad type is used for the medium speed chip to chip communication inferface of the new TC270 / TC275
/ TC277. It compose out of a LVDSM pad and a MP pad.
This pad combination is always supplied by the 5V or 3.3V.
For the parameters of the MP pad please see Chapter 3.5.
default after start-up = CMOS function
Table 3-26 LVDSM
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Output impedance RO CC 40 100 140 Ohm
Fall time tF CC--2.5 nsZload = 100 Ohm;
termination 100 Ohm
±1%
Rise time tR CC--2.5 nsZload = 100 Ohm;
termination 100 Ohm
±1%
Pad set-up time tSET_LVDS
CC
-1013 µs
Output Differential Voltage VOD CC 250 - 400 mV termination 100 Ohm
±1%
Output voltage high VOH CC - - 1475 mV termination 100 Ohm
±1%
Output voltage low VOL CC 925 - - mV termination 100 Ohm
±1%
Output Offset Voltage VOS CC 1125 - 1275 mV termination 100 Ohm
±1%
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationVADC Parameters
Data Sheet 185 V 1.0 2017-01
3.9 VADC Parameters
VADC parameter are valid for VDDM = 4.5 V to 5.5 V.
This tables also covers the parameters for Class D pads.
Table 3-27 VADC
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Analog reference voltage 1) VAREF SR VAGND +
1.0
-VDDM +
0.05
V
Analog reference ground VAGND SR VSSM -
0.05
-VSSM +
0.05
V
Analog input voltage range VAIN SR VAGND - VAREF V
Converter reference clock fADCI SR 2 - 20 MHz
Charge consumption per
conversion 2) 3)
QCONV CC - 50 75 pC VAIN = 5 V, charge
consumed from
reference pin,
precharging disabled
-1022 pC
VAIN = 5 V, charge
consumed from
reference pin,
precharging enabled
Conversion time for 12-bit
result
tC12 CC - (16 +
STC) x
tADCI + 2 x
tVADC
- Includes sample time
and post calibration
Conversion time for 10-bit
result
tC10 CC - (14 +
STC) x
tADCI + 2 x
tVADC
- Includes sample time
Conversion time for 8-bit result tC8 CC - (12 +
STC) x
tADCI + 2 x
tVADC
- Includes sample time
Conversion time for fast
compare mode
tCF CC - (4 + STC)
x tADCI + 2
x tVADC
- Includes sample time
Broken wire detection delay
against VAGND 4)
tBWG CC - - 120 cycles Result below 10%
Broken wire detection delay
against VAREF 5)
tBWR CC - - 60 cycles Result above 80%
Input leakage at analog inputs IOZ1 CC -350 - 350 nA Analog Inputs overlaid
with class LP pads or
pull down diagnostics
-150 - 150 nA else
Total Unadjusted Error 1) TUE CC -4 6) -4
6) LSB 12-bit resolution
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationVADC Parameters
Data Sheet 186 V 1.0 2017-01
INL Error EAINL CC -3 - 3 LSB 12-bit resolution
Gain Error 1) EAGAIN CC -3.5 - 3.5 LSB 12-bit resolution
DNL error 1) EADNL CC -3 - 3 LSB 12-bit resolution
Offset Error 1) EAOFF CC -4 - 4 LSB 12-bit resolution
Total capacitance of an analog
input
CAINT CC--30 pF
Switched capacitance of an
analog input
CAINS CC 2 4 7 pF
Resistance of the analog input
path
RAIN CC - - 1.5 kOhm else
- - 1.8 kOhm valid for analog inputs
mapped to GPIOs
Switched capacitance of a
reference input
CAREFS CC--30 pF
RMS Noise 7) ENRMS CC - 0.5 0.8 6)8) LSB
Positive reference VAREFx pin
leakage
IOZ2 CC -7 - 7 µA VAREFx = VAREF2;
VAREF>VDDMV;
TJ>150°C
-4 - 4 µA VAREFx = VAREF2;
VAREF>VDDMV;
TJ150°C
-2 - 3 µA VAREFx = VAREF2;
VAREFVDDMV;
TJ>150°C
-1 - 1 µA VAREFx = VAREF2;
VAREFVDDMV;
TJ150°C
Negative reference VAGNDx pin
leakage
IOZ3 CC -13 - 13 µA VAGNDx = VAGND2;
VAGND<VSSMV;
TJ>150°C
-7 - 7 µA VAGNDx = VAGND2;
VAGND<VSSMV;
TJ150°C
-3.3 - 2.5 µA VAGNDx = VAGND2;
VAREFVDDMV;
TJ>150°C
-2.85 - 1 µA VAGNDx = VAGND2;
VAREFVDDMV;
TJ150°C
Resistance of the reference
input path
RAREF CC--1 kOhm
CSD resistance 9) RCSD CC--28 kOhm
Table 3-27 VADC (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationVADC Parameters
Data Sheet 187 V 1.0 2017-01
The following VADC parameter are valid for VDDM = 2.97 V to 3.63 V.
Resistance of the multiplexer
diagnostics pull-down device
RMDD CC 25 + 1*VIN -35 - 8*VIN kOhm 0 V VIN 2.5 V
-5 +
13*VIN
-15 +
16*VIN
kOhm 2.5 V VIN VDDM
Resistance of the multiplexer
diagnostics pull-up device
RMDU CC 45 - 6*VIN -90 -
16*VIN
kOhm 0 V VIN 2.5 V
40 - 4*VIN -65 - 6*VIN kOhm 2.5 V VIN VDDM
Resistance of the pull-down
test device 10)
RPDD CC--0.3 kOhm
CSD voltage accuracy 11) 12) dVCSD CC--10 %
Wakeup time tWU CC--12 µs
1) If the reference voltage is reduced by the factor k (k < 1), TUE,DNL,INL,Gain, and Offset errors increase also by the factor
1/k. VAREF must be decoupled with an external capacitor.
2) For QCONV = X pC and a conversion time of 1 µs a rms value of X µA results for IAREFx.
3) For the details of the mapping for a VADC group to pin VAREFx please see the User's Manual.
4) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion
rate higher than 1 conversion per 500 ms.
5) The broken wire detection delay against VAREF is measured in numbers of consecutive precharge cycles at a conversion
rate higher than 1 conversion per 10 ms. This function is influenced by leakage current, in particular at high temperature.
6) Resulting worst case combined error is arithmetic combination of TUE and ENRMS.
7) This parameter is valid for soldered devices and requires careful analog board design.
8) Value is defined for one sigma Gauss distribution.
9) In order to avoid an additional error due to incomplete sampling, the sampling time shall be set greater than 5 * RCSD * CAINS.
10) The pull-down resistor RPDD is connected between the input pad and the analog multiplexer. The input pad
itself adds another 200-Ohm series resistance, when measuring through the pin.
11) CSD: Converter Self Diagnostics, for details please consult the User's Manual.
12) Note, that in case CSD voltage is chosen to nom. 1/3 or 2/3 of VAREF voltage, the reference voltage is loaded with a current
of max. VAREF / 45 kOhm.
Table 3-28 VADC_33V
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Analog reference voltage 1) VAREF SR VAGND +
1.0
-VDDM +
0.05
V
Analog reference ground VAGND SR VSSM -
0.05
-VSSM +
0.05
V
Analog input voltage range VAIN SR VAGND - VAREF V
Converter reference clock fADCI SR 2 - 20 MHz
Table 3-27 VADC (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationVADC Parameters
Data Sheet 188 V 1.0 2017-01
Charge consumption per
conversion 2) 3)
QCONV CC - 35 50 pC VAIN = 3.3 V, charge
consumed from
reference pin,
precharging disabled
- 8 17 pC VAIN = 3.3 V, charge
consumed from
reference pin,
precharging enabled
Conversion time for 12-bit
result
tC12 CC - (16 +
STC) x
tADCI + 2 x
tVADC
- Includes sample time
and post calibration
Conversion time for 10-bit
result
tC10 CC - (14 +
STC) x
tADCI + 2 x
tVADC
- Includes sample time
Conversion time for 8-bit result tC8 CC - (12 +
STC) x
tADCI + 2 x
tVADC
- Includes sample time
Conversion time for fast
compare mode
tCF CC - (4 + STC)
x tADCI + 2
x tVADC
- Includes sample time
Broken wire detection delay
against VAGND 4)
tBWG CC - - 120 cycles Result below 10%
Broken wire detection delay
against VAREF 5)
tBWR CC - - 60 cycles Result above 80%
Input leakage at analog inputs IOZ1 CC -350 - 350 nA Analog Inputs overlaid
with class LP pads or
pull down diagnostics
-150 - 150 nA else
Total Unadjusted Error 1) TUE CC -12 6) -12
6) LSB 12-bit Resolution; TJ >
150 °C
-6 6) -6
6) LSB 12-bit Resolution; TJ
150 °C
INL Error EAINL CC -12 - 12 LSB 12-bit Resolution; TJ >
150 °C
-5 - 5 LSB 12-bit Resolution;
TJ
150 °C
Gain Error 1) EAGAIN CC -6 - 6 LSB 12-bit Resolution; TJ >
150 °C
-5.5 - 5.5 LSB 12-bit Resolution;
TJ
150 °C
Table 3-28 VADC_33V (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationVADC Parameters
Data Sheet 189 V 1.0 2017-01
DNL error 1) EADNL CC -4 - 4 LSB 12-bit resolution
Offset Error 1) EAOFF CC -6 - 6 LSB 12-bit Resolution; TJ >
150 °C
-5 - 5 LSB 12-bit Resolution;
TJ
150 °C
Total capacitance of an analog
input
CAINT CC--30 pF
Switched capacitance of an
analog input
CAINS CC 2 4 7 pF
Resistance of the analog input
path
RAIN CC--4.5 kOhm
Switched capacitance of a
reference input
CAREFS CC--30 pF
RMS Noise 7) ENRMS CC--1.7 6)8) LSB
Positive reference VAREFx pin
leakage
IOZ2 CC -6 - 6 µA VAREFx = VAREF2;
VAREF>VDDMV;
TJ>150°C
-3.5 - 3.5 µA VAREFx = VAREF2;
VAREF>VDDMV;
TJ150°C
-2 - 2.5 µA VAREFx = VAREF2;
VAREFVDDMV;
TJ>150°C
-1 - 1 µA VAREFx = VAREF2;
VAREFVDDMV;
TJ150°C
Negative reference VAGNDx pin
leakage
IOZ3 CC -12 - 12 µA VAGNDx = VAGND2;
VAGND<VSSMV;
TJ>150°C
-6.5 - 6.5 µA VAGNDx = VAGND2;
VAGND<VSSMV;
TJ150°C
-2.2 - 2 µA VAGNDx = VAGND2;
VAREFVDDMV;
TJ>150°C
-1 - 1 µA VAGNDx = VAGND2;
VAREFVDDMV;
TJ150°C
Resistance of the reference
input path
RAREF CC--3 kOhm
CSD resistance 9) RCSD CC--28 kOhm
Table 3-28 VADC_33V (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon ...........................
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationVADC Parameters
Data Sheet 190 V 1.0 2017-01
Figure 3-1 Equivalent Circuitry for Analog Inputs
Resistance of the multiplexer
diagnostics pull-down device
RMDD CC 25 + 3*VIN -40 +
12*VIN
kOhm 0 V VIN 1.667 V
0 + 18*VIN -0 + 18*VIN kOhm 1.667 V VIN VDDM
Resistance of the multiplexer
diagnostics pull-up device
RMDU CC 60 -
12*VIN
-120 -
30*VIN
kOhm 0 V VIN 1.667 V
55 - 9*VIN -95 -
15*VIN
kOhm 1.667 V VIN VDDM
Resistance of the pull-down
test device 10)
RPDD CC--0.9 kOhm
CSD voltage accuracy 11) 12) dVCSD CC--10 %
Wakeup time tWU CC--12 µs
1) If the reference voltage is reduced by the factor k (k < 1), TUE,DNL,INL,Gain, and Offset errors increase also by the factor
1/k. VAREF must be decoupled with an external capacitor.
2) For QCONV = X pC and a conversion time of 1 µs a rms value of X µA results for IAREFx.
3) For the details of the mapping for a VADC group to pin VAREFx please see the User's Manual.
4) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion
rate higher than 1 conversion per 500 ms.
5) The broken wire detection delay against VAREF is measured in numbers of consecutive precharge cycles at a conversion
rate higher than 1 conversion per 10 ms. This function is influenced by leakage current, in particular at high temperature.
6) Resulting worst case combined error is arithmetic combination of TUE and ENRMS.
7) This parameter is valid for soldered devices and requires careful analog board design.
8) Value is defined for one sigma Gauss distribution.
9) In order to avoid an additional error due to incomplete sampling, the sampling time shall be set greater than 5 * RCSD * CAINS.
10) The pull-down resistor RPDD is connected between the input pad and the analog multiplexer. The input pad
itself adds another 200-Ohm series resistance, when measuring through the pin.
11) CSD: Converter Self Diagnostics, for details please consult the User's Manual.
12) Note, that in case CSD voltage is chosen to nom. 1/3 or 2/3 of VAREF voltage, the reference voltage is loaded with a current
of max. VAREF / 45 kOhm.
Table 3-28 VADC_33V (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
A/D Converter
MCS05570
R
Source
V
AIN
C
Ext
C
AINT
C
AINS
-
R
AIN, On
C
AINS
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationDSADC Parameters
Data Sheet 191 V 1.0 2017-01
3.10 DSADC Parameters
The following DSADC parameter are valid for VDDM = 4.5 V to 5.5 V.
Table 3-29 DSADC
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Analog input voltage range 1) VDSIN SR 0 - 5 V single ended
0 - 10 V differential;VDSxP -
VDSxN
Reference load current IREF SR - 4.5 6.3 µA per twin-modulator (1
or 2 channels)
Modulator clock frequency 2) fMOD SR 10 - 20 MHz
Gain error EDGAIN CC -1 - 1 3) % Calibrated once
-3.5 4) -3.5
4) % Uncalibrated
-0.2 - 0.2
5) % calibrated; GAIN = 1;
MODCFG.INCFGx=01
DC offset error EDOFF CC -5 - 5 5) mV calibrated
-50 - 50 mV calibrated once
-100 4) 04) 100 4) mV gain = 1; uncalibrated
Common Mode Rejection Ratio EDCM CC 200 500 -
Input impedance 6) RDAIN CC 100 130 170 kOhm Exact value (±1%)
available in UCB
Signal-Noise Ratio 7) 8) 9) 10) SNR CC 80 - - dB fPB = 30 kHz; VDDM =
±5%; fMOD = 20 MHz;
GAIN = 1
78 - - dB fPB = 50 kHz; VDDM =
±5%; fMOD = 20 MHz;
GAIN = 1
70 - - dB fPB = 100 kHz; VDDM =
±10%; fMOD = 20 MHz;
GAIN = 1
74 - - dB fPB = 100 kHz; VDDM =
±5%; fMOD = 20 MHz;
GAIN = 1
76 - - dB fPB = 30 kHz; VDDM =
±10%; fMOD = 20 MHz;
GAIN = 1
74 - - dB fPB = 50 kHz; VDDM =
±10%; fMOD = 20 MHz;
GAIN = 1
Pass band fPB CC 10 11) - 100 kHz Output data rate fD =
fPB * 3
Pass band ripple 8) dfPB CC -1 - 1 %
Output sampling rate fD CC 30 - 330 kHz
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationDSADC Parameters
Data Sheet 192 V 1.0 2017-01
DC compensation factor DCF CC -3 - - dB 10-5 fD
Positive reference VAREF1 pin
leakage
IOZ5 CC -2 - 2 µA all ADCs disabled
Negative reference VAGND1 pin
leakage
IOZ6 CC -2 - 2 µA all ADCs disabled
Stop band attenuation 8) SBA CC 40 - - dB 0.5 ... 1 fD
45 - - dB 1 ... 1.5 fD
50 - - dB 1.5 ... 2 fD
55 - - dB 2 ... 2.5 fD
60 - - dB 2.5 ... OSR/2 fD
Reference ground voltage VAGND SR VSSM -
0.05
-VSSM +
0.05
V
Positive reference voltage VAREF SR VDDMnom *
0.9
-VDDM +
0.05
V
Common mode voltage
accuracy
dVCM CC -100 - 100 mV from selected voltage
Common mode hold voltage
deviation 12)
dVCMH CC -200 - 200 mV From common mode
voltage
Analog filter settling time tAFSET CC - 2 4 µs If enabled
Modulator recovery time tMREC CC - 3.5 5.5 µs After leaving overdrive
state
Modulator settling time 13) tMSET CC - 1 - µs After switching on,
voltage regulator
already running
Spurious Free Dynamic Range
7)14)
SFDR CC 60 - - dB VCM = 2.2 V, DC
coupled; VDDM = ±10%
1) The maximum input range for symmetrical signals (e.g. AC-coupled inputs) depends on the selected internal/external
common mode voltage. In this case the Amplitude is limited to VCM * 2.
2) All modulators must run on the same frequency.
3) The calibration sequence must be executed once after an Application Reset
4) The total DC error for the uncalibrated case can be calculated by the geometric addition of EDGAIN and EDOFF
5) Recalibration needed in case of a temperature change > 20ºC
6) The variation of the impedance between different channels is < 1.5%.
7) Derating factors:
-2 dB in standard-performance mode.
-3 dB for CMV = 10B, i.e. VCM = (VAREF±2%) / 2.0.
8) CIC3, FIR0, FIR1 filters enabled.
9) Single-ended mode reduces the SNR by 6 dB if the unused input is grounded, by 3 dB if the unused input connects to VCM
(GAIN = 2).
10) The defined limits are only valid if the following condition is not applicable: TJ > 150°C and VVAREF > VDDM.
11) 10 kHz only reachable with 10 MHz modulator clock frequency.
12) Voltage VCM is proportional to VAREF, voltage VCMH is proportional to VDDM.
13) The modulator needs to settle after being switched on and after leaving the overdrive state.
14) SFDR = 20 * log(INL / 2N); N = amount of bits
Table 3-29 DSADC (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationDSADC Parameters
Data Sheet 193 V 1.0 2017-01
The following DSADC parameter are valid for VDDM = 2.97 V to 3.63 V.
Table 3-30 DSADC_33V
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Analog input voltage range 1) VDSIN SR 0 - 3.3 V single ended
0 - 6.6 V differential;VDSxP -
VDSxN
Reference load current IREF SR - 4.5 5.8 µA per twin-modulator (1
or 2 channels)
Modulator clock frequency 2) fMOD SR 10 - 20 MHz
Gain error EDGAIN CC -1.5 - 1.5 3) % Calibrated once
-10 4) -10
4) % Uncalibrated
-0.3 - 0.3
5) % calibrated; GAIN = 1;
MODCFG.INCFGx=01
DC offset error EDOFF CC -5 - 5 5) mV calibrated
-50 - 50 mV calibrated once
-100 4) -100
4) mV gain = 1; uncalibrated
-0
4) - mV gain = 1; uncalibrated;
uncalibrated
Common Mode Rejection Ratio EDCM CC 200 500 -
Input impedance 6) RDAIN CC 100 130 170 kOhm Exact value (±1%)
available in UCB
Signal-Noise Ratio 7) 8) 9) 10) SNR CC 45 63 - dB fPB = 100kHz; VDDM =
±10%; fMOD = 20 MHz;
GAIN = 1
60 69 - dB fPB = 100kHz; VDDM =
±5%; fMOD = 20 MHz;
GAIN = 1
60 68 - dB fPB = 30kHz; VDDM =
±10%; fMOD = 20 MHz;
GAIN = 1
69 74 - dB fPB = 30kHz; VDDM =
±5%; fMOD = 20 MHz;
GAIN = 1
55 66 - dB fPB = 50kHz; VDDM =
±10%; fMOD = 20 MHz;
GAIN = 1
65 72 - dB fPB = 50kHz; VDDM =
±5%; fMOD = 20 MHz;
GAIN = 1
Pass band fPB CC 10 11) - 100 kHz Output data rate fD =
fPB * 3
Pass band ripple 8) dfPB CC -1 - 1 %
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationDSADC Parameters
Data Sheet 194 V 1.0 2017-01
Output sampling rate fD CC 30 - 330 kHz
DC compensation factor DCF CC -3 - - dB 10-5 fD
Positive reference VAREF1 pin
leakage
IOZ5 CC -2 - 2 µA
Negative reference VAGND1 pin
leakage
IOZ6 CC -2 - 2 µA
Stop band attenuation 8) SBA CC 40 - - dB 0.5 ... 1 fD
45 - - dB 1 ... 1.5 fD
50 - - dB 1.5 ... 2 fD
55 - - dB 2 ... 2.5 fD
60 - - dB 2.5 ... OSR/2 fD
Reference ground voltage VAGND SR VSSM -
0.05
-VSSM +
0.05
V
Positive reference voltage VAREF SR VDDMnom *
0.9
-VDDM +
0.05
V
Common mode voltage
accuracy
dVCM CC -100 - 100 mV from selected voltage
Common mode hold voltage
deviation 12)
dVCMH CC -200 - 200 mV From common mode
voltage
Analog filter settling time tAFSET CC - 2 4 µs If enabled
Modulator recovery time tMREC CC - 3.5 - µs After leaving overdrive
state
Modulator settling time 13) tMSET CC - 1 - µs After switching on,
voltage regulator
already running
Spurious Free Dynamic Range
7)14)
SFDR CC 52 - - dB VCM = 2.2 V, DC
coupled; VDDM = ±10%
60 - - dB VCM = 2.2 V, DC
coupled; VDDM = ±5%
1) The maximum input range for symmetrical signals (e.g. AC-coupled inputs) depends on the selected internal/external
common mode voltage. In this case the Amplitude is limited to VCM * 2.
2) All modulators must run on the same frequency.
3) The calibration sequence must be executed once after an Application Reset
4) The total DC error for the uncalibrated case can be calculated by the geometric addition of EDGAIN and EDOFF
5) Recalibration needed in case of a temperature change > 20ºC.
6) The variation of the impedance between different channels is < 1.5%.
7) Derating factors:
-2 dB in standard-performance mode.
-3 dB for CMV = 10B, i.e. VCM = (VAREF±2%) / 2.0.
8) CIC3, FIR0, FIR1 filters enabled.
9) Single-ended mode reduces the SNR by 6 dB if the unused input is grounded, by 3 dB if the unused input connects to VCM
(GAIN = 2).
10) The defined limits are only valid if the following condition is not applicable: TJ > 150°C and VVAREF > VDDM.
Table 3-30 DSADC_33V (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationDSADC Parameters
Data Sheet 195 V 1.0 2017-01
Figure 3-2 DSADC Analog Inputs
11) 10 kHz bandwidth only with 10Mhz modulator clock frequency reachable
12) Voltage VCM is proportional to VAREF, voltage VCMH is proportional to VDDM.
13) The modulator needs to settle after being switched on and after leaving the overdrive state.
14) SFDR = 20 * log(INL / 2N); N = amount of bits
MC_DSADC _MODULATORBLOCK
Input
Modu -
lator
130 kΩ
VCM
Gain
Gain
37 kΩ
130 kΩ
37 kΩ
=
VOFFSET
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationMHz Oscillator
Data Sheet 196 V 1.0 2017-01
3.11 MHz Oscillator
OSC_XTAL is used as accurate and exact clock source. OSC_XTAL supports 8 MHz to 40 MHz crystals external
outside of the device. Support of ceramic resonators is also provided.
Note:It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target
system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits
specified by the crystal or ceramic resonator supplier.
Table 3-31 OSC_XTAL
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Input current at XTAL1 IIX1 CC -25 - 25 µA VIN>0V ; VIN<VDDP3V
Oscillator frequency fOSC SR 4 - 40 MHz Direct Input Mode
selected
8 - 40 MHz External Crystal Mode
selected
Oscillator start-up time 1)
1) tOSCS is defined from the moment when VDDP3 = 3.13V until the oscillations reach an amplitude at XTAL1 of 0.3 * VDDP3.
The external oscillator circuitry must be optimized by the customer and checked for negative resistance as recommended
and specified by crystal suppliers.
tOSCS CC--5 2)
2) This value depends on the frequency of the used external crystal. For faster crystal frequencies this value decrease.
ms
Input high voltage at XTAL1 VIHBX SR 0.8 - VDDP3 +
0.5
V If shaper is bypassed
Input low voltage at XTAL1 VILBX SR -0.5 - 0.4 V If shaper is bypassed
Input voltage at XTAL1 VIX SR -0.5 - VDDP3 +
0.5
V If shaper is not
bypassed
Input amplitude (peak to peak)
at XTAL1
VPPX SR 0.3 *
VDDP3
-VDDP3 +
1.0
V If shaper is not
bypassed; fOSC >
25MHz
0.4 *
VDDP3
-VDDP3 +
1.0
V If shaper is not
bypassed; fOSC
25MHz
Internal load capacitor CL0 CC 2 2.35 2.7 pF
Internal load capacitor CL1 CC 2 2.35 2.7 pF
Internal load capacitor CL2 CC 3 3.5 4 pF
Internal load capacitor CL3 CC 5.1 5.9 6.6 pF
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationBack-up Clock
Data Sheet 197 V 1.0 2017-01
3.12 Back-up Clock
The back-up clock provides an alternative clock source.
Table 3-32 Back-up Clock
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Back-up clock before trimming fBACKUT CC 75 100 125 MHz VEXT2.97V
Back-up clock after trimming fBACKT CC 97.5 100 102.5 MHz VEXT2.97V
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationTemperature Sensor
Data Sheet 198 V 1.0 2017-01
3.13 Temperature Sensor
The following formula calculates the temperature measured by the DTS in [oC] from the RESULT bit field of the
DTSSTAT register.
(3.1)
Table 3-33 DTS
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Measurement time tM CC--100 µs
Calibration reference accuracy TCALACC CC -1 - 1 °C calibration points @
TJ=-40°C and
TJ=127°C
Non-linearity accuracy over
temperature range
TNL CC -2 - 2 °C
Temperature sensor range TSR SR -40 - 170 °C
Start-up time after resets
inactive
tTSST SR--20 µs
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationPower Supply Current
Data Sheet 199 V 1.0 2017-01
3.14 Power Supply Current
The total power supply current defined below consists of leakage and switching component.
Application relevant values are typically lower than those given in the following table and depend on the customer's
system operating conditions (e.g. thermal connection or used application configurations).
The operating conditions for the parameters in the following table are:
The real (realisic) power pattern defines the following conditions:
TJ= 150 °C
fSRI =fMAX =fCPU0 =200MHz
fSPB =fSTM =fGTM =fBAUD1 =fBAUD2 =fASCLIN =40MHz
VDD =1.326V
VDDP3 =3.366V
VEXT / FLEX =VDDM =5.1V
all cores are active including one lockstep core
the following peripherals are inactive: HSM, HSCT, Ethernet, PSI5, I2C, FCE, MTU, and 50% of the DSADC
channels
The max power pattern defines the following conditions:
TJ= 150 °C
fSRI =fMAX =fCPU0 =200MHz
fSPB =fSTM =fGTM =fBAUD1 =fBAUD2 =fASCLIN = 100 MHz
VDD =1.43V
VDDP3 =3.63V
VEXT / FLEX =VDDM =5.5V
all cores and lockstep cores are active
all peripherals are active
Table 3-34 Power Supply
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Sum of IDD 1.3 V core and
peripheral supply currents
IDD CC - - 550 mA max power pattern
- - 350 mA real power pattern
IDD core current during active
power-on reset (PORST held
low)
IDDPORST
CC
--80 mATJ=125°C
--160 mA
TJ=150°C
--215 mA
TJ=165°C
IDD core current of CPU0
lockstep core active
IDDC01 CC - - 36 mA real power pattern
IDD core current of CPU1 main
core with CPU1 lockstep core
inactive
IDDC10 CC - - 43 mA real power pattern
IDD core current of CPU1 main
core with lockstep core active
IDDC11 CC - - IDDC10 +
36
mA real power pattern
IDD core current of CPU2 main
core
IDDC20 CC - - 37 mA real power pattern
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationPower Supply Current
Data Sheet 200 V 1.0 2017-01
IDD core current added by HSM IDDHSM CC - - 20 mA HSM running at
100MHz.
Sum of 3.3 V supply currents
without pad activity
IDDx3RAIL CC - - 57 mA real power pattern
IDDFL3 Flash memory current IDDFL3 CC--42 1) mA flash read current
--42
2) mA flash read current
while programming
Dflash
IDDP3 supply current without
pad activity
IDDP3 CC--15 1) mA real power pattern;
incl. OSC current &
flash read current
--37
3) mA incl. OSC current and
flash 3.3V
programming current
when using external
5V supply
--39
2) mA incl. OSC current and
flash programming
current at 3.3V
IDDP3 supply current for LVDSH
pads in LVDS mode
IDDP3LVDSH
CC
--16 mA
Σ Sum of external and ADC
supply currents (incl.
IEXTFLEX+IDDM+IEXTLVDSM)
IEXTRAIL CC - - 62 mA real power pattern
Sum of IEXT and IFLEX supply
current without pad activity
IEXT/FLEX CC - - 4 mA real power pattern;
PORST output
inactive.
IEXT supply current for LVDSM
pads in LVDS mode
IEXTLVDSM
CC
--14
4) mA real power pattern
Table 3-34 Power Supply (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationPower Supply Current
Data Sheet 201 V 1.0 2017-01
IDDM supply current IDDM CC - - 44 mA real power pattern;
sum of currents of
DSADC and VADC
modules
- - 30 mA current for DSADC
module only; 50%
DSADC channels
active.
- - 14 mA real pattern; current for
VADC only
--59
5) mA max power pattern; All
DSADC channels
active 100% time.
--17
6) mA max power pattern; All
VADC converters are
active 100% time
Σ Sum of all currents (incl.
IEXTRAIL+IDDx3RAIL+IDD)
IDDTOT CC - - 469 mA real power pattern
Σ Sum of all currents with DC-
DC EVR13 regulator active 7)
IDDTOTDC3
CC
- - 302 mA real power pattern;
VEXT = 3.3V
Σ Sum of all currents with DC-
DC EVR13 regulator active 7)
IDDTOTDC5
CC
- - 240 mA real power pattern;
VEXT = 5V
Sum of all currents
(STANDBY mode)
IEVRSB CC--150 8) µA Standby RAM is
active. Power to
remaining domains
switched off. TJ =
25°C; VEVRSB = 5V
Sum of all currents (SLEEP
mode)
ISLEEP CC - - 15 mA All CPUs in idle, All
peripherals in sleep,
fSRI/SPB = 1 MHz via
LPDIV divider; TJ =
25°C
Maximum power dissipation PD CC - - 1480 mW max power pattern
- - 1014 mW real power pattern
1) Realistic Pflash read pattern with 70% Pflash bandwidth utlilization and a code mix of 50% 0s and 50% 1s. A common
decoupling capacitor of atleast 100nF for (VDDFL3+VDDP3) is used. Dflash read current is also included. Flash read current
is predominantly drawn from VDDFL3 pin and a minor part drawn from the neighbouring VDDP3 pin.
2) Continuous Dflash programming in burst mode with 3.3 V supply and realistic Pflash read access in parallel. Erase currents
of the corresponding flash modules are less than the respective programming currents at VDDP3 pin. Programming and
erasing flash may generate transient current spikes of up to x mA for maximum x us which is handled by the decoupling
and buffer capacitors. This parameter is relevant for external power supply dimensioning and not for thermal
considerations.
3) In addition to the current specified, upto 4 mA is additionally drawn at VEXT supply in burst programming mode with 5V
external supply. Erase currents of the corresponding flash modules are less than the respective programming currents at
VDDP3 supply. This parameter is relevant for external power supply dimensioning and not for thermal considerations.
Table 3-34 Power Supply (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@160"
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationPower Supply Current
Data Sheet 202 V 1.0 2017-01
3.14.1 Calculating the 1.3 V Current Consumption
The current consumption of the 1.3 V rail compose out of two parts:
Static current consumption
Dynamic current consumption
The static current consumption is related to the device temperature TJ and the dynamic current consumption
depends of the configured clocking frequencies and the software application executed. These two parts needs to
be added in order to get the rail current consumption.
(3.2)
(3.3)
Function 2 defines the typical static current consumption and Function 3 defines the maximum static current
consumption. Both functions are valid for VDD =1.326V.
4) The current consumption is for 2 pairs of LVDSM differential pads (8 pins). A single pair of LVDSM differential pads (4 pins)
consumes 7 mA.
5) The current consumption is for 6 DS channels with standard performance (MCFG=11b). A single DS channel instance
consumes 6-8 mA.
6) A single converter instance of VADC unit consumes 2 mA.
7) The total current drawn from external regulator is estimated with 72% EVR13 SMPS regulator Efficiency. IDDTOTDCx is
calculated from IDDTOT using the scaled core current [(IDD x VDD)/(VinxEfficiency)] and constitutes all other rail currents and
IDDM.
8) Current at VEVRSB supply pin during normal RUN mode is less than 5 mA at Tj =150 degC. The transition between RUN
mode to STANDBY mode has a duration of less than 100us during which the current is higher but is less than 8 mA at Tj
=150 degC. Once STANDBY mode is entered with only Standby RAM active the current is less than 5mA at Tj = 150 degC.
It is recommended to have atleast 100 nF decoupling capacitor at this pin.
I01135mA
C
---------
,e0 02689,TJ
×
×C[]=
I03 264 mA
C
---------
,e00259,TJ
×
×C[]=
@160"
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationPower-up and Power-down
Data Sheet 203 V 1.0 2017-01
3.15 Power-up and Power-down
3.15.1 External Supply Mode
5 V & 1.3 V supplies are externally supplied. 3.3V is generated internally by EVR33.
External supplies VEXT and VDD may ramp-up or ramp-down independent of each other with regards to start,
rise and fall time(s). Voltage Ramp-up from a residual threshold (Eg : up to 1 V) should also lead to a normal
startup of the device.
The rate at which current is drawn from the external regulator (dIEXT /dt or dIDD /dt) is limited in the Start-up
phase to a maximum of 50 mA/100 us.
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It
is recommended to keep the PORST (input) asserted until all the external supplies are above their primary
reset thresholds.
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among
the three supply domains (1.3 V, 3.3 V or 5 V) violate their primary under-voltage reset thresholds.The
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the
basic supply and clock infrastructure is available.
The power sequence as shown in Figure 3-3 is enumerated below
T1 refers to the point in time when basic supply and clock infrastructure is available as the external supplies
ramp up. The supply mode is evaluated based on the HWCFG [0:2] pins and consequently a soft start of
EVR33 regulator is initiated.
T2 refers to the point in time when all supplies are above their primary reset thresholds. EVR33 regulator
has ramped up. PORST (output) is deasserted and HWCFG [0:7] pins are latched on PORST rising edge.
Firmware execution is initiated.
T3 refers to the point in time when Firmware execution is completed. User code execution starts with a
default frequency of 100 MHz.
T4 refers to the point in time during the Ramp-down phase when atleast one of the externally provided or
generated supplies (1.3 V, 3.3 V or 5 V) drop below their respective primary under-voltage reset
thresholds.
Please note that there is no special requirements for PORST slew rates.
@neon fiiiii
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationPower-up and Power-down
Data Sheet 204 V 1.0 2017-01
Figure 3-3 External Supply Mode - 5 V and 1.3 V externally supplied
V
EXT (externally supplied )
EVR33 Ramp-up Phase
PORST (output )
T0
1
T1
2
T2
0 V
0
5.0 V
2. 97 V Prim ar y R eset Thr eshol d
3
T3
Firmware Execution
Basic Supply & Clock
Infrastr ucture
POR ST (i nput )
User Code Execution
0 V
1.30 V
V
DD (externally supplied )
1. 17 V Prim ar y R eset Thr eshol d
5.5 V
4.5 V
1. 33 V
Power Ramp-down phase
4
f
CPU
=100 M H z default
on firmware exit
T4
Startup_Diag_1 v 0.1
0 V
3.30 V
3. 63 V
2. 97 V
V
DDP3 ( inter nall y generated
by EVR33 )
Pr i mar y R es et Thr eshol d
@160"
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationPower-up and Power-down
Data Sheet 205 V 1.0 2017-01
3.15.2 Single Supply Mode
5 V single supply mode. 1.3 V & 3.3 V are generated internally by EVR13 & EVR33.
The rate at which current is drawn from the external regulator (dIEXT /dt) is limited in the Start-up phase to a
maximum of 50 mA/100 us.
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It
is recommended to keep the PORST (input) asserted until the external supply is above the respective primary
reset threshold.
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among
the three supply domains (1.3 V, 3.3 V or 5 V) violate their primary under-voltage reset thresholds.The
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the
basic supply and clock infrastructure is available.
The power sequence as shown in Figure 3-4 is enumerated below
T1 refers to the point in time when basic supply and clock infrastructure is available as the external supply
ramps up. The supply mode is evaluated based on the HWCFG [0:2] pins and consequently a soft start of
EVR13 and EVR33 regulators are initiated.
T2 refers to the point in time when all supplies are above their primary reset thresholds. EVR13 and EVR33
regulators have ramped up. PORST (output) is deasserted and HWCFG [0:7] pins are latched on PORST
rising edge. Firmware execution is initiated.
T3 refers to the point in time when Firmware execution is completed. User code execution starts with a
default frequency of 100 MHz.
T4 refers to the point in time during the Ramp-down phase when atleast one of the externally provided or
generated supplies (1.3 V, 3.3 V or 5 V) drop below their respective primary under-voltage reset
thresholds.
Please note that there is no special requirements for PORST slew rates.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationPower-up and Power-down
Data Sheet 206 V 1.0 2017-01
Figure 3-4 Single Supply Mode - 5 V single supply
V
EXT (external l y suppl ied )
EVR 13 & EVR 33 Ramp- up
Phase
T0
1
T1
2
T2
0 V
0
5.0 V
2. 97 V Primary Reset Threshold
3
T3
Firmware Execution
Basic Suppl y & C lock
Infrastructure
User C ode Executi on
0 V
1.30 V
V
DD ( inter nally generated
by EVR13 )
1. 17 V Primary Reset Threshold
5.5 V
4.5 V
1. 33 V
Power Ramp -down phase
4
f
CPU
=100 MH z defaul t
on firmware exit
T4
Startup_Diag_2 v 0.1
0 V
3.30 V
3. 63 V
2. 97 V
V
DDP3 ( inter nall y gener ated
by EVR 33 )
Primary Reset Threshold
POR ST (output )
POR ST ( i nput )
@160"
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationPower-up and Power-down
Data Sheet 207 V 1.0 2017-01
3.15.3 External Supply Mode
All supplies, namely 5 V, 3.3 V & 1.3 V, are externally supplied.
External supplies VEXT ,, VDDP3 & VDD may ramp-up or ramp-down independent of each other with regards
to start, rise and fall time(s).
The rate at which current is drawn from the external regulator (dIEXT /dt, dIDD /dt or dIDDP3 /dt) is limited in
the Start-up phase to a maximum of 50 mA/100 us.
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It
is recommended to keep the PORST (input) asserted until all the external supplies are above their primary
reset thresholds.
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among
the three supply domains (1.3 V, 3.3 V or 5 V) violate their primary under-voltage reset thresholds.The
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the
basic supply and clock infrastructure is available.
The power sequence as shown in Figure 3-5 is enumerated below
T1 refers to the point in time when all supplies are above their primary reset thresholds and basic clock
infrastructure is available. The supply mode is evaluated based on the HWCFG [0:2] pins. PORST (output)
is deasserted and HWCFG [0:7] pins are latched on PORST rising edge. Firmware execution is initiated.
T2 refers to the point in time when Firmware execution is completed. User code execution starts with a
default frequency of 100 MHz.
T3 refers to the point in time during the Ramp-down phase when atleast one of the externally provided
supplies (1.3 V, 3.3 V or 5 V) drop below their respective primary under-voltage reset thresholds.
Please note that there is no special requirements for PORST slew rates.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationPower-up and Power-down
Data Sheet 208 V 1.0 2017-01
Figure 3-5 External Supply Mode - 5 V, 3.3 V & 1.3 V externally supplied
VEXT (externally supplied )
T0
1
0 V
0
5.0 V
2. 97 V Prim ar y R eset Thr eshold
2
T2
Firmware Execution
Basic Supply & Clock
Infrastr ucture
User Code Execution
0 V
1.30 V
VDD (exter nally suppl i ed )
1. 17 V Prim ar y R eset Thr eshold
5.5 V
4.5 V
1. 33 V
Power Ram p -dow n phase
3
f
CPU
=100 MH z default
on firmware exit
T3
Startup_Diag_3 v 0.1
0 V
3.30 V
3. 63 V
2. 97 V
VDDP3 ( exter nally suppl i ed )
Pr i mar y R es et Threshol d
PORST (output )
POR ST (i nput )
T1
@160" PORST
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationPower-up and Power-down
Data Sheet 209 V 1.0 2017-01
3.15.4 Single Supply Mode
3.3 V single supply mode. 1.3 V is generated internally by EVR13.
The rate at which current is drawn from the external regulator (dIEXT /dt) is limited in the Start-up phase to a
maximum of 50 mA/100 us.
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It
is recommended to keep the PORST (input) asserted until the external supply is above the respective primary
reset threshold.
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among
the three supply domains (1.3 V or 3.3 V) violate their primary under-voltage reset thresholds.The
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the
basic supply and clock infrastructure is available.
The power sequence as shown in Figure 3-6 is enumerated below
T1 refers to the point in time when basic supply and clock infrastructure is available as the external supply
ramps up. The supply mode is evaluated based on the HWCFG [0:2] pins and consequently a soft start of
EVR13 regulator is initiated.
T2 refers to the point in time when all supplies are above their primary reset thresholds. EVR13 regulator
has ramped up. PORST (output) is deasserted and HWCFG [0:7] pins are latched on PORST rising edge.
Firmware execution is initiated.
T3 refers to the point in time when Firmware execution is completed. User code execution starts with a
default frequency of 100 MHz.
T4 refers to the point in time during the Ramp-down phase when atleast one of the externally provided or
generated supplies (1.3 V or 3.3 V) drop below their respective primary under-voltage reset thresholds.
Please note that there is no special requirements for PORST slew rates.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationPower-up and Power-down
Data Sheet 210 V 1.0 2017-01
Figure 3-6 Single Supply Mode - 3.3 V single supply
EVR 13 Ramp- up Phase
T0
1
T1
2
T2
0 3
T3
Firmware Execution
Basic Suppl y & C lock
Infrastructure
User C ode Executi on
0 V
1.30 V
VD D ( i nter nal l y gener ated
by EVR 13)
1. 17 V Primary Reset Threshold
1. 33 V
Power Ramp -down phase
4
f
CPU
=100 MH z defaul t
on firmware exit
T4
Startup_Diag_4 v 0.1
POR ST (output )
POR ST ( i nput )
0 V
3.30 V
3. 63 V
2. 97 V
VDDP3 (externall y supplied )
Primary Reset Threshold
VEXT (externally supplied )
&
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationReset Timing
Data Sheet 211 V 1.0 2017-01
3.16 Reset Timing
Table 3-35 Reset Timings
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Application Reset Boot Time 1)
1) The duration of the boot time is defined between the rising edge of the internal application reset and the clock cycle when
the first user instruction has entered the CPU pipeline and its processing starts.
tB CC--350 2)
2) The timing values assumes programmed BMI with ESR0CNT inactive.
µs operating with max.
frequencies.
System Reset Boot Time tBS CC--1 ms
Power on Reset Boot Time 3)
3) The duration of the boot time is defined by all external supply voltages are inside there operation condictions and the clock
cycle when the first user instruction has entered the CPU pipeline and its processing starts.
tBP CC--2.5 2) ms dV/dT=1V/ms.
including EVR ramp-
up and Firmware
execution time
--1.11
2) ms Firmware execution
time; without EVR
operation (external
supply only)
Minimum PORST hold time
incase of power fail event
issued by EVR primary monitor
tEVRPOR CC 10 - - µs
EVR start-up or ramp-up time tEVRstartup
CC
--1 msdV/dT=1V/ms. EVR13
and EVR33 active
Minimum PORST active hold
time after power supplies are
stable at operating levels 4)
tPOA CC 1 - - ms
Configurable PORST digital
filter delay in addition to analog
pad filter delay
tPORSTDF CC 600 - 1200 ns
HWCFG pins hold time from
ESR0 rising edge
tHDH CC 16 / fSPB --ns
HWCFG pins setup time to
ESR0 rising edge
tHDS CC 0 - - ns
Ports inactive after ESR0 reset
active
tPI CC--8/fSPB ns
Ports inactive after PORST
reset active 5)
tPIP CC--150 ns
Hold time from PORST rising
edge
tPOH SR 150 - - ns
Setup time to PORST rising
edge
tPOS SR 0 - - ns
@neon I—‘— — r $ : ~ n , \ .4 \ mm a I "\ I «mam l \
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationReset Timing
Data Sheet 212 V 1.0 2017-01
Figure 3-7 Power, Pad and Reset Timing
4) The regulator that supplies VEXT should ensure that VEXT is in the operational region before PORST is externally released
by the regulator. Incase of 5V nominal supply, it should be ensured that VEXT > 4V before PORST is released. Incase of
3.3V nominal supply , it should be ensured that VEXT > 3V before PORST is released. The additional minimum PORST hold
time is required as an additional mechanism to avoid consecutive PORST toggling owing to slow supply slopes or residual
supply ramp-ups. It is also required to activate external PORST atleast 100us before power-fail is recognised to avoid
consecutive PORST toggling on a power fail event.
5) This parameter includes the delay of the analog spike filter in the PORST pad.
reset_beh_aurix
VDDP
PORST
Pads
Pad-
state
undefined
VDD
V
D D PPA
V
DDPPA
Pad-
state
undefined
V
DDPR
Programmed Z / HTristate Z / pullup H
t
POA
t
POA
HWCFG
ESR0
t
PIP
Z / H
Cold Warm
t
HDH
TESTMODE
t
POS
t
POH
t
POS
t
POH
TRST
t
PI
Programmed Programmed
t
PI
power -on config
t
HDA
t
HDH
config
t
HDA
t
HDH
config
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationEVR
Data Sheet 213 V 1.0 2017-01
3.17 EVR
Table 3-36 3.3V
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Input voltage range 1)
1) A maximum pass device dropout voltage of 700mV is included in the minimum input voltage to ensure optimal pass device
operation.
VIN SR 4 - 5.50 V pass device=on chip
Output voltage operational
range including load/line
regulation and aging incase of
LDO regulator
VOUT CC 2.97 3.3 3.63 V pass device=on chip
Output VDDx3 static voltage
accuracy after trimming and
aging without dynamic load/line
Regulation incase of LDO
regulator.
VOUTT CC 3.225 3.3 3.375 V pass device=on chip
Output buffer capacitance on
VOUT 2)
2) It is recommended to select a capacitor with ESR less than 50 mOhm (0.5MHz - 10 MHz). It is also recommended that the
resistance of the supply trace from the pin to the EVR output capacitor is less than 100 mOhm.
COUT CC - 1 - µF pass device=on chip
Primary Undervoltage Reset
threshold for VDDx3 3)
3) The reset release on supply ramp-up is delayed by a time duration 20-40 us after reaching undervoltage reset threshold.
This serves as a time hysteresis to avoid multiple consecutive cold PORST events during slow supply ramp-ups owing to
voltage drop/current jumps when reset is released. The reset limit of 2,97V at pin is for the case with 3.3V generated
internally from EVR33. In case the 3.3V supply is provided externally, the bondwire drop will cause a reset at a higher
voltage of 3.0V at the VDDP3 pin.
VRST33 CC - - 3.0 V by reset release before
EVR trimming on
supply ramp-up.
Startup time tSTR CC - - 1000 µs Only EVR33 active. ;
pass device=on chip
External VIN supply ramp 4)
4) EVR robust against residual voltage ramp-up starting between 0-1 V.
dVin/dT
SR
- 1 50 V/ms pass device=on chip
Load step response dVout/dIout
CC
--240 mVdI=-70mA/20ns;
Tsettle=20us; pass
device=on chip
-240 - - mV dI=50mA/20ns;
Tsettle=100us; pass
device=on chip
Line step response dVout/dVin
CC
-20 - 20 mV dV/dT=1V/ms; pass
device=on chip
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationEVR
Data Sheet 214 V 1.0 2017-01
Table 3-37 1.3V
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Input voltage range 1)
1) A maximum pass device dropout voltage of 700mV is included in the minimum input voltage to ensure optimal pass device
operation.
VIN SR 2.97 - 5.5 V pass device=off chip
Output voltage operational
range including load/line
regulation and aging incase of
LDO regulator
VOUT CC 1.17 1.3 1.43 V pass device=off chip
Output VDD static voltage
accuracy after trimming without
dynamic load/line regulation
with aging incase of LDO
regulator.
VOUTT CC 1.275 1.3 1.325 V pass device=off chip
Output buffer capacitance on
VOUT 2)
2) It is recommended to select a capacitor with ESR less than 50 mOhm (0.5MHz - 10 MHz). It is also recommended that the
resistance of the supply trace from the pin to the EVR output capacitor is less than 100 mOhm.
COUT CC 3 4.7 6.3 µF pass device=off chip
Primary undervoltage reset
threshold for VDD 3)
3) The reset release on supply ramp-up is delayed by a time duration 30-60 µs after reaching undervoltage reset threshold.
This serves as a time hysteresis to avoid multiple consecutive cold PORST events during slow supply ramp-ups owing to
voltage drop/current jumps when reset is released.
VRST13 CC - - 1.17 V by reset release before
EVR trimming on
supply ramp-up. pass
device=off chip
Startup time tSTR CC - - 1000 µs pass device=off chip.
Only EVR13 active.
External VIN supply ramp 4)
4) EVR robust against residual voltage ramp-up starting between 0-1 V.
dVin/dT
SR
- 1 50 V/ms pass device=off chip
Load step response dVout/dIout
CC
--100 mVdI=-150mA;
Tsettle=20µs; pass
device=off chip
-100 - - mV dI=100mA;
Tsettle=20µs; pass
device=off chip
Line step response dVout/dVin
CC
-10 - 10 mV dV/dT=1V/ms; pass
device=off chip
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationEVR
Data Sheet 215 V 1.0 2017-01
Table 3-38 Supply Monitoring
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
VEXT primary undervoltage
monitor accuracy after
trimming 1)
1) The monitor tolerances constitute the inherent variation of the bandgap and ADC over process, voltage and temperature
operational ranges. The xxxPRIUV parameters are device individually tested in production with ±1% tolerance about the
min and max xxxPRIUV limits.
VEXTPRIUV
SR
2.86 2.92 2.97 V VEXT = Undervoltage
Reset Threshold
VDDP3 primary undervoltage
monitor accuracy after
trimming 1)
VDDP3PRIUV
SR
2.86 2.90 2.97 V VDDP3 = Undervoltage
Reset Threshold
VDD primary undervoltage
monitor accuracy after
trimming 1)
VDDPRIUV
SR
1.13 1.15 1.17 V VDD = Undervoltage
Reset Threshold
VEXT secondary supply monitor
accuracy
VEXTMON CC 4.9 5.0 5.1 V SWDxxVAL VEXT
monitoring
threshold=5V=DBh
VDDP3 secondary supply
monitor accuracy
VDDP3MON
CC
3.23 3.30 3.37 V EVR33xxVAL VDDP3
monitoring
threshold=3.3V=91h
VDD secondary supply monitor
accuracy
VDDMON CC 1.27 1.30 1.33 V EVR13xxVAL VDD
monitoring
threshold=1.3V=E4h
EVR primary and secondary
monitor measurement latency
for a new supply value
tEVRMON CC - - 1.8 µs after trimming
Table 3-39 EVR13 SMPS External components
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
External output capacitor value
1)
COUTDC SR 15.4 22 29.7 µF IDDDC=1A
6.5 10 13.5 µF IDDDC=400mA
External output capacitor ESR CDC_ESR SR - - 50 mOhm f0.5MHz ; f10MHz
--100 Ohm
f=10Hz
External input capacitor value 1) CIN SR 6.5 10 13.5 µF IDDDC=1A
4.42 6.8 9.18 µF IDDDC=400mA
External input capacitor ESR CIN_ESR SR - - 50 mOhm f0.5MHz ; f10MHz
--100 Ohm
f=100Hz
External inductor value 2) LDC SR 2.31 3.3 4.29 µH fDCDC=1.5MHz
3.29 4.7 6.11 µH fDCDC=1MHz
External inductor ESR LDC_ESR SR--0.2 Ohm
P + N-channel MOSFET logic
level
VLL SR--2.5 V
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationEVR
Data Sheet 216 V 1.0 2017-01
P + N-channel MOSFET drain
source breakdown voltage
|VBR_DS| SR--7 V
P + N-channel MOSFET drain
source ON-state resistance
RON SR - - 150 mOhm IDDDC=1A;VGS=2.5V ;
TA=25°C
- - 200 mOhm IDDDC=400mA;VGS=2.5
V ; TA=25°C
P + N-channel MOSFET Gate
Charge
Qac SR - 4 - nC IDDDC=1A; MOS-
VGS=5V
-8-nC
IDDDC=400mA; MOS-
VGS=5V
External MOSFET
commutation time
tc SR 10 30 40 ns configurable
N-channel MOSFET reverse
diode forward voltage
VRDN SR - 0.8 - V
1) Capacitor min-max range represent typical ±35% tolerance including DC bias effect. The trace resistance from the
capacitor to the supply or ground rail should be limited to 25 mOhm.
2) External inductor min-max range represent typical ±30% tolerance at a DC bias current of 100mA.
Table 3-40 EVR13 SMPS
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Input VEXT Voltage range VIN SR 2.97 - 5.5 V
SMPS regulator output voltage
range including load/line
regulation and aging 1)
VDDDC CC 1.17 - 1.43 V VDD2.97V ; VDD5.5V
; IDDDC1mA ;
IDDDC1A
SMPS regulator static voltage
output accuracy after trimming
without dynamic load/line
Regulation with aging. 2)
VDDDCT CC 1.275 1.3 1.325 V VDD2.97V ; VDD5.5V
; IDDDC1mA ;
IDDDC1A
Programmable switching
frequency
fDCDC CC 0.4 - 2.0 MHz
Switching frequency
modulation spread
fDCSPR CC--2% MHz
Maximum ripple at IMAX (peak-
to-peak) 3)
VDDDC CC--15 mVVDD2.97V ; VDD5.5V
; IDDDC300mA ;
IDDDC1A
No load current consumption of
SMPS regulator
IDCNL CC - 5 10 mA fDCDC=1MHz
Table 3-39 EVR13 SMPS External components (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationEVR
Data Sheet 217 V 1.0 2017-01
SMPS regulator load transient
response
dVout/dIout
CC
-25 - 25 mV dI < 200mA ;
fDCDC=1MHz; tr=0.1µs;
tf=0.1µs; VDDDC=1.3V
-65 - 65 mV dI < 400mA ;
fDCDC=1MHz; tr=0.1µs;
tf=0.1µs; VDDDC=1.3V
-130 - 130 mV dI < 700mA ;
fDCDC=1MHz; tr=0.1µs;
tf=0.1µs; VDDDC=1.3V
Maximum output current of the
regulator
IMAX SR - - 1 A limited by thermal
constraints and
component choice
SMPS regulator efficiency nDC CC - 85 - % VIN=3.3V;
IDDDC=300mA;
fDCDC=1MHz
-75-%VIN=5V; IDDDC=400mA;
fDCDC=1.5MHz
-80-%VIN=5V; IDDDC=400mA;
fDCDC=1MHz
1) Incase of SMPS mode, It shall be ensured that the VDD output pin shall be connected on PCB level to all other VDD Input
pins.
2) Incase of fSRI running with max frequency, it shall be ensured that the VDD operating range is limited to 1.235V upto 1.430V.
The DCDC may be configured in this case with a nominal voltage of 1.33V±7.5%. The static accuracy and regulation
parameter ranges remain also valid for this case.
3) If frequency spreading (SDFREQSPRD = 1) is activated, an additional ripple of 1% need to be considered.
Table 3-40 EVR13 SMPS (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationPhase Locked Loop (PLL)
Data Sheet 218 V 1.0 2017-01
3.18 Phase Locked Loop (PLL)
Note:The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL= 20 pF with the
maximum driver and sharp edge.
Note:The maximum peak-to-peak noise on the power supply voltage, is limited to a peak-to-peak voltage of
VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz.
These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the
supply pins and using PCB supply and ground planes.
Table 3-41 PLL
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
PLL base frequency fPLLBASE CC 80 150 360 MHz
VCO frequency range fVCO SR 400 - 800 MHz
VCO Input frequency range fREF CC 8 - 24 MHz
Modulation Amplitude MA CC 0 - 2 %
Peak Period jitter DP CC -200 - 200 ps
Peak Accumulated Jitter DPP CC -5 - 5 ns without modulation
Total long term jitter JTOT CC - - 11.5 ns including modulation;
MA 1%
System frequency deviation fSYSD CC - - 0.01 % with active modulation
Modulation variation frequency fMV CC 2 3.6 5.4 MHz
PLL lock-in time tL CC 11.5 - 200 µs
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationERAY Phase Locked Loop (ERAY_PLL)
Data Sheet 219 V 1.0 2017-01
3.19 ERAY Phase Locked Loop (ERAY_PLL)
Note:The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL= 20 pF with the
maximum driver and sharp edge.
Note:The maximum peak-to-peak noise on the power supply voltage, is limited to a peak-to-peak voltage of
VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz.
These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the
supply pins and using PCB supply and ground planes.
Table 3-42 PLL_ERAY
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
PLL Base Frequency of the
ERAY PLL
fPLLBASE_ERA
Y CC
50 200 320 MHz
VCO frequency range of the
ERAY PLL
fVCO_ERAY
SR
400 - 480 MHz
VCO input frequency of the
ERAY PLL
fREF SR 16 - 24 MHz
Accumulated_Jitter DP CC -0.5 - 0.5 ns
Accumulated jitter at SYSCLK
pin
DPP CC -0.8 - 0.8 ns
PLL lock-in time tL CC 5.6 - 200 µs
@neon Xvixyprzx/vuum‘ 7 VW nzx/ vum><>
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationAC Specifications
Data Sheet 220 V 1.0 2017-01
3.20 AC Specifications
All AC parameters are specified for the complette operating range defined in Chapter 3.4 unless otherwise noted
in colum Note / test Condition.
Unless otherwise noted in the figures the timings are defined with the following guidelines:
Figure 3-8 Definition of rise / fall times
Figure 3-9 Time Reference Point Definition
10%
90%
10%
90%
V
SS
V
EXT/FL EX
/V
DDP3
t
r
rise_fall
t
f
timing_reference
V
EXT/FL EX
/V
DDP3
Timing
Reference
Points
V
EXT /FL EX
/V
DDP3
V
SS
V
EXT/FL EX
/V
DDP3
22
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationJTAG Parameters
Data Sheet 221 V 1.0 2017-01
3.21 JTAG Parameters
The following parameters are applicable for communication through the JTAG debug interface. The JTAG module
is fully compliant with IEEE1149.1-2000.
Figure 3-10 Test Clock Timing (TCK)
Table 3-43 JTAG
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
TCK clock period t1 SR 25 - - ns
TCK high time t2 SR 10 - - ns
TCK low time t3 SR 10 - - ns
TCK clock rise time t4 SR--4 ns
TCK clock fall time t5 SR--4 ns
TDI/TMS setup to TCK rising
edge
t6 SR 6.0 - - ns
TDI/TMS hold after TCK rising
edge
t7 SR 6.0 - - ns
TDO valid after TCK falling
edge (propagation delay) 1)
1) The falling edge on TCK is used to generate the TDO timing.
t8 CC 3.0 - - ns CL20pF
--16 ns
CL50pF
TDO hold after TCK falling
edge 1)
t18 CC 2 - - ns
TDO high impedance to valid
from TCK falling edge 1)2)
2) The setup time for TDO is given implicitly by the TCK cycle time.
t9 CC - - 17.5 ns CL50pF
TDO valid output to high
impedance from TCK falling
edge 1)
t10 CC--17 nsCL50pF
MC_JTAG_TCK
0.9
VDDP
0.5
VDDP
t1
t2t3
0.1
VDDP
t5t4
@ineon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationJTAG Parameters
Data Sheet 222 V 1.0 2017-01
Figure 3-11 JTAG Timing
t
6
t
7
t
6
t
7
t
9
t
8
t
10
TCK
TMS
TDI
TDO
MC_JTAG
t
18
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationDAP Parameters
Data Sheet 223 V 1.0 2017-01
3.22 DAP Parameters
The following parameters are applicable for communication through the DAP debug interface.
Figure 3-12 Test Clock Timing (DAP0)
Figure 3-13 DAP Timing Host to Device
Table 3-44 DAP
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
DAP0 clock period t11 SR 6.25 - - ns
DAP0 high time t12 SR 2 - - ns
DAP0 low time t13 SR 2 - - ns
DAP0 clock rise time t14 SR--1 nsf=160MHz
--2 ns
f=80MHz
DAP0 clock fall time t15 SR--1 nsf=160MHz
--2 ns
f=80MHz
DAP1 setup to DAP0 rising
edge
t16 SR 4 - - ns
DAP1 hold after DAP0 rising
edge
t17 SR 2 - - ns
DAP1 valid per DAP0 clock
period 1)
1) The Host has to find a suitable sampling point by analyzing the sync telegram response.
t19 CC 3 - - ns CL=20pF ; f=160MHz
8 - - ns CL=20pF ; f=80MHz
10 - - ns CL=50pF ; f=40MHz
MC_DAP0
0.9
VDDP
0.5
VDDP
t11
t12 t13
0.1
VDDP
t15 t14
t
16
t
17
DAP0
DAP1
MC_DAP1_RX
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationDAP Parameters
Data Sheet 224 V 1.0 2017-01
Figure 3-14 DAP Timing Device to Host (DAP1 and DAP2 pins)
Note:The DAP1 and DAP2 device to host timing is individual for both pins. There is no guaranteed max. signal
skew.
DAP1
MC_ DAP1_TX
t
11
t
19
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationASCLIN SPI Master Timing
Data Sheet 225 V 1.0 2017-01
3.23 ASCLIN SPI Master Timing
This section defines the timings for the ASCLIN in the TC270 / TC275 / TC277, for 5V power supply.
Note:Pad asymmetry is already included in the following timings.
Table 3-45 Master Mode MP+ss/MPRss output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
ASCLKO clock period 1)
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
t50 CC 20 - - ns CL=25pF
Deviation from ideal duty cycle
2)
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -3 - 3 ns 0 < CL < 50pF
MTSR delay from ASCLKO
shifting edge
t51 CC -7 - 6 ns CL=25pF
ASLSOn delay from the first
ASCLKO edge
t510 CC 5 - 35 ns CL=25pF; pad used =
LPm
MRST setup to ASCLKO
latching edge
t52 SR 28 - - ns CL=25pF
MRST hold from ASCLKO
latching edge
t53 SR -6 - - ns CL=25pF
Table 3-46 Master Mode MP+sm/MPRsm output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
ASCLKO clock period 1)
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
t50 CC 50 - - ns CL=50pF
Deviation from ideal duty cycle
2)
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -2 - 3+0.01 *
CL
ns 0 < CL < 200pF
MTSR delay from ASCLKO
shifting edge
t51 CC -10 - 10 ns CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC 5 - 35 ns CL=50pF; pad used =
LPm
MRST setup to ASCLKO
latching edge
t52 SR 50 - - ns CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR -10 - - ns CL=50pF
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationASCLIN SPI Master Timing
Data Sheet 226 V 1.0 2017-01
Table 3-47 Master Mode MPss output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
ASCLKO clock period 1)
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
t50 CC 20 - - ns CL=25pF
Deviation from ideal duty cycle
2)
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -2 - 3.5+0.035
* CL
ns 0 < CL < 200pF
MTSR delay from ASCLKO
shifting edge
t51 CC -7 - 6 ns CL=25pF
ASLSOn delay from the first
ASCLKO edge
t510 CC -7 - 6 ns CL=25pF
MRST setup to ASCLKO
latching edge
t52 SR 30 - - ns CL=25pF, else
33 3)
3) Please note that these pins didn't support the hystereses inactive feature.
--nsCL=25pF, for P14.2,
P14.4, and P15.1
MRST hold from ASCLKO
latching edge
t53 SR -5 - - ns CL=25pF
Table 3-48 Master Mode MPsm output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
ASCLKO clock period 1)
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
t50 CC 100 - - ns CL=50pF
Deviation from ideal duty cycle
2)
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -3 - 4+0.04 *
CL
ns 0 < CL < 200pF
MTSR delay from ASCLKO
shifting edge
t51 CC -11 - 10 ns CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC -11 - 10 ns CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR 60 - - ns CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR -10 - - ns CL=50pF
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationASCLIN SPI Master Timing
Data Sheet 227 V 1.0 2017-01
Table 3-49 Master Mode medium output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
ASCLKO clock period 1)
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
t50 CC 200 - - ns CL=50pF
Deviation from ideal duty cycle
2)
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -8 - 4+0.04 *
CL
ns 0 < CL < 200pF
MTSR delay from ASCLKO
shifting edge
t51 CC -20 - 15 ns CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC -20 - 20 ns CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR 70 - - ns CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR -10 - - ns CL=50pF
Table 3-50 Master Mode weak output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
ASCLKO clock period 1)
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
t50 CC 1000 - - ns CL=50pF
Deviation from ideal duty cycle
2)
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -30 - 30+0.15 *
CL
ns 0 < CL < 200pF
MTSR delay from ASCLKO
shifting edge
t51 CC -75 - 75 ns CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC -65 - 65 ns CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR 510 - - ns CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR -50 - - ns CL=50pF
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationASCLIN SPI Master Timing
Data Sheet 228 V 1.0 2017-01
Figure 3-15 ASCLIN SPI Master Timing
ASCLIN_TmgMM.vsd
ASCLKO
MTSR
t51 t51
MRST
t53
Data valid
ASLSO
t510
t50
t500
t52
Data valid
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationASCLIN SPI Master Timing
Data Sheet 229 V 1.0 2017-01
3.24 ASCLIN SPI Master Timing
This section defines the timings for the ASCLIN in the TC270 / TC275 / TC277, for 3.3V power supply, Medium
Performance pads, strong sharp edge (MPss), CL=25pF.
Note:Pad asymmetry is already included in the following timings.
Table 3-51 Master Mode MP+ss/MPRss output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
ASCLKO clock period 1)
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
t50 CC 40 - - ns CL=25pF
Deviation from ideal duty cycle
2)
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -5 - 5 ns 0 < CL < 50pF
MTSR delay from ASCLKO
shifting edge
t51 CC -12 - 12 ns CL=25pF
ASLSOn delay from the first
ASCLKO edge
t510 CC 0 - 60 ns CL=25pF; pad used =
LPm
MRST setup to ASCLKO
latching edge
t52 SR 50 - - ns CL=25pF
MRST hold from ASCLKO
latching edge
t53 SR -5 - - ns CL=25pF
Table 3-52 Master Mode MP+sm/MPRsm output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
ASCLKO clock period 1)
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
t50 CC 100 - - ns CL=50pF
Deviation from ideal duty cycle
2)
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -3 - 7 ns 0 < CL < 200pF
MTSR delay from ASCLKO
shifting edge
t51 CC -17 - 17 ns CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC 0 - 60 ns CL=50pF; pad used =
LPm
MRST setup to ASCLKO
latching edge
t52 SR 85 - - ns CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR -5 - - ns CL=50pF
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationASCLIN SPI Master Timing
Data Sheet 230 V 1.0 2017-01
Table 3-53 Master Mode MPss output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
ASCLKO clock period 1)
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
t50 CC 40 - - ns CL=25pF
Deviation from ideal duty cycle
2)
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -5 - 7+0.07 *
CL
ns 0 < CL < 200pF
MTSR delay from ASCLKO
shifting edge
t51 CC -12 - 12 ns CL=25pF
ASLSOn delay from the first
ASCLKO edge
t510 CC -12 - 12 ns CL=25pF
MRST setup to ASCLKO
latching edge
t52 SR 50 - - ns CL=25pF
MRST hold from ASCLKO
latching edge
t53 SR -5 - - ns CL=25pF
Table 3-54 Master Mode MPsm output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
ASCLKO clock period 1)
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
t50 CC 200 - - ns CL=50pF
Deviation from ideal duty cycle
2)
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -5 - 9+0.06 *
CL
ns 0 < CL < 200pF
MTSR delay from ASCLKO
shifting edge
t51 CC -19 - 17 ns CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC -19 - 17 ns CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR 100 - - ns CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR -13 - - ns CL=50pF
Table 3-55 Master Mode medium output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
ASCLKO clock period 1) t50 CC 400 - - ns CL=50pF
Deviation from ideal duty cycle
2)
t500 CC -6-0.07 *
CL
-6+0.07 *
CL
ns 0 < CL < 200pF
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationASCLIN SPI Master Timing
Data Sheet 231 V 1.0 2017-01
MTSR delay from ASCLKO
shifting edge
t51 CC -33 - 25 ns CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC -35 - 35 ns CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR 120 - - ns CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR -13 - - ns CL=50pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Table 3-56 Master Mode weak output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
ASCLKO clock period 1)
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
t50 CC 2000 - - ns CL=50pF
Deviation from ideal duty cycle
2)
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -110 - 150 ns 0 < CL < 200pF
MTSR delay from ASCLKO
shifting edge
t51 CC -170 - 170 ns CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC -170 - 170 ns CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR 510 - - ns CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR -40 - - ns CL=50pF
Table 3-57 Master Mode A2ss output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
ASCLKO clock period 1) t50 CC 20 - - ns CL=50pF
Deviation from ideal duty cycle
2)
t500 CC -3 - 3 ns CL=50pF
MTSR delay from ASCLKO
shifting edge
t51 CC -4 - 4 ns CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC -5 - 4 ns CL=50pF
Table 3-55 Master Mode medium output pads (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationASCLIN SPI Master Timing
Data Sheet 232 V 1.0 2017-01
Figure 3-16 ASCLIN SPI Master Timing
MRST setup to ASCLKO
latching edge
t52 SR 17 - - ns CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR 0 - - ns CL=50pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Table 3-58 Master Mode A2sm output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
ASCLKO clock period 1)
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
t50 CC 40 - - ns CL=50pF
Deviation from ideal duty cycle
2)
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -4 - 4 ns CL=50pF
MTSR delay from ASCLKO
shifting edge
t51 CC -8 - 6 ns CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC -8 - 9 ns CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR 26 - - ns CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR 0 - - ns CL=50pF
Table 3-57 Master Mode A2ss output pads (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
ASCLIN_TmgMM.vsd
ASCLKO
MTSR
t51 t51
MRST
t53
Data valid
ASLSO
t510
t50
t500
t52
Data valid
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
Data Sheet 233 V 1.0 2017-01
3.25 QSPI Timings, Master and Slave Mode
This section defines the timings for the QSPI in the TC270 / TC275 / TC277, for 5V pad power supply.
It is assumed that SCLKO, MTSR, and SLSO pads have the same pad settings:
LVDSM output pads,LVDSH input pad, master mode, CL=25pF
Medium Performance Plus Pads (MP+):
strong sharp edge (MP+ss), CL=25pF
strong medium edge (MP+sm), CL=50pF
medium edge (MP+m), CL=50pF
weak edge (MP+w), CL=50pF
Medium Performance Pads (MP):
strong sharp edge (MPss), CL=25pF
strong medium edge (MPsm), CL=50pF
Medium and Low Performance Pads (MP/LP), the identical output strength settings:
medium edge (LP/MPm), CL=50pF
weak edge (MPw), CL=50pF
Note:Pad asymmetry is already included in the following timings.
Table 3-59 Master Mode Timing, LVDSM output pads for data and clock
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
SCLKO clock period 1)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
t50 CC 20 2)
2) The capacitive load on the LVDS pins is differential, the capacitive load on the CMOS pins is single ended.
--nsCL=25pF
Deviation from the ideal duty
cycle 3) 4)
3) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
4) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -1 - 1 ns CL=25pF
MTSR delay from SCLKO
shifting edge
t51 CC -3 - 3 ns CL=25pF
SLSOn deviation from the ideal
programmed position
t510 CC 0 - 30 ns CL=25pF; MPsm
-5 - 7 ns CL=25pF; MPss
-4 - 7 ns MP+ss;
CL=25pF
-1 - 15 ns MP+sm;
CL=25pF
MRST setup to SCLK latching
edge 5)
5) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
t52 SR 19 5) --nsCL=25pF; LVDSM 5V
output and LVDSH
3.3V input
MRST hold from SCLK latching
edge
t53 SR -6 5) --nsCL=25pF; LVDSM 5V
output and LVDSH
3.3V input
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
Data Sheet 234 V 1.0 2017-01
Table 3-60 Master Mode MP+ss/MPRss output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
SCLKO clock period 1)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
t50 CC 20 - - ns CL=25pF
Deviation from the ideal duty
cycle 2) 3)
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -3 - 3 ns 0 < CL < 50pF
MTSR delay from SCLKO
shifting edge
t51 CC -7 - 6 ns CL=25pF
SLSOn deviation from the ideal
programmed position
t510 CC -7 - 6 ns CL=25pF
MRST setup to SCLK latching
edge 4)
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
t52 SR 27 4)5)
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
--nsCL=25pF
MRST hold from SCLK latching
edge
t53 SR -6 4)5) --nsCL=25pF
Table 3-61 Master Mode MP+sm/MPRsm output pads for data and clock
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
SCLKO clock period 1)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
t50 CC 50 - - ns CL=50pF
Deviation from the ideal duty
cycle 2) 3)
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -2 - 3+0.01 *
CL
ns 0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC -10 - 10 ns CL=50pF
SLSOn deviation from the ideal
programmed position
t510 CC -10 - 10 ns MP+sm; CL=50pF
-13 - 1 ns MPss;
CL=50pF
0 - 40 ns MP+m, MPm, LPm;
CL=50pF
MRST setup to SCLK latching
edge 4)
t52 SR 50 4)5) --nsCL=50pF
MRST hold from SCLK latching
edge
t53 SR -10 4)5) --nsCL=50pF
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
Data Sheet 235 V 1.0 2017-01
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-62 Master Mode timing MPsm output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
SCLKO clock period 1)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
t50 CC 100 - - ns CL=50pF
Deviation from the ideal duty
cycle 2) 3)
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -3 - 4+0.04 *
CL
ns 0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC -11 - 10 ns CL=50pF
SLSOn deviation from the ideal
programmed position
t510 CC -11 - 10 ns CL=50pF
MRST setup to SCLK latching
edge 4)
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
t52 SR 60 4)5)
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
--nsCL=50pF
MRST hold from SCLK latching
edge
t53 SR -10 4)5) --nsCL=50pF
Table 3-63 Master Mode timing MPRm/MP+m/MPm/LPm output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
SCLKO clock period 1)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
t50 CC 200 - - ns CL=50pF
Deviation from the ideal duty
cycle 2) 3)
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -10 - 10+0.04 *
CL
ns 0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC -15 - 19 ns CL=50pF
SLSOn deviation from the ideal
programmed position
t510 CC -20 - 20 ns CL=50pF
MRST setup to SCLK latching
edge 4)
t52 SR 70 4)5) --nsCL=50pF
MRST hold from SCLK latching
edge
t53 SR -10 4)5) --nsCL=50pF
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
Data Sheet 236 V 1.0 2017-01
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-64 Master Mode Weak output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
SCLKO clock period 1)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
t50 CC 1000 - - ns CL=50pF
Deviation from the ideal duty
cycle 2) 3)
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -30 - 30+0.15 *
CL
ns 0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC -65 - 65 ns CL=50pF
SLSOn deviation from the ideal
programmed position
t510 CC -70 - 65 ns CL=50pF
MRST setup to SCLK latching
edge 4)
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
t52 SR 300 4)5)
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
--nsCL=50pF
MRST hold from SCLK latching
edge
t53 SR -40 4)5) --nsCL=50pF
Table 3-65 Slave mode timing
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
SCLK clock period t54 SR 4 x TMAX --ns
SCLK duty cycle t55/t54 SR 40 - 60 %
MTSR setup to SCLK latching
edge
t56 SR 4 1) - - ns Hystheresis Inactive
5 1) - - ns Input Level AL
5 1) - - ns Input Level TTL
MTSR hold from SCLK latching
edge
t57 SR 3 1) - - ns Hystheresis Inactive
6 1) - - ns Input Level AL
9 1) - - ns Input Level TTL
SLSI setup to first SCLK shift
edge
t58 SR 5 1) - - ns Hystheresis Inactive
4 1) - - ns Input Level AL
8 1) - - ns Input Level TTL
6 - - ns Only for pin 15.1, AL
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
Data Sheet 237 V 1.0 2017-01
Figure 3-17 Master Mode Timing
SLSI hold from last SCLK
latching edge
t59 SR 3 1) - - ns Hystheresis Inactive
4 1) - - ns Input Level AL
8 1) - - ns Input Level TTL
MRST delay from SCLK shift
edge
t60 CC 10 - 70 ns MP+m/MPRm;
CL=50pF
10 - 50 ns MP+sm/MPRsm;
CL=50pF
5 - 30 ns MP+ss/MPRss;
CL=25pF
40 - 300 ns MP+w/MPRw;
CL=50pF
10 - 70 ns MPm/LPm;
CL=50pF
10 - 55 ns MPsm;
CL=50pF
5 - 30 ns MPss;
CL=25pF
40 - 300 ns MPw/LPw;
CL=50pF
SLSI to valid data on MRST t61 SR--5 ns
1) Except pin P15.1.
Table 3-65 Slave mode timing (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
QSPI_TmgMM.vsd
SCLK1)2)
MTSR1)
t51
MRST1)
t53
Data valid
SLSOn2)
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0, ECON.B=0 (no sampling point delay).
2) t510 is the deviation from the ideal position configured with the leading delay, BACON.LPRE and BACON.LEAD > 0.
t50
t500
t52
Data valid
SAMPLING POINT
t510
0.5 VEXT/FLEX
0.5 VEXT/FLEX
0.5 VEXT/FLEX
@neon aaaaaa
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
Data Sheet 238 V 1.0 2017-01
Figure 3-18 Slave Mode Timing
3.26 QSPI Timings, Master and Slave Mode
This section defines the timings for the QSPI in the TC270 / TC275 / TC277, for 3.3V pad power supply.
It is assumed that SCLKO, MTSR, and SLSO pads have the same pad settings:
LVDSM output pads, LVDSH input pad, master mode, CL=25pF
Medium Performance Plus Pads (MP+):
strong sharp edge (MP+ss), CL=25pF
strong medium edge (MP+sm), CL=50pF
medium edge (MP+m), CL=50pF
weak edge (MP+w), CL=50pF
Medium Performance Pads (MP):
strong sharp edge (MPss), CL=25pF
strong medium edge (MPsm), CL=50pF
Medium and Low Performance Pads (MP/LP), the identical output strength settings:
medium edge (LP/MPm), CL=50pF
weak edge (MPw), CL=50pF
Note:Pad asymmetry is already included in the following timings.
Table 3-66 Master Mode Timing, LVDSM output pads for data and clock
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
SCLKO clock period 1) t50 CC 20 - - ns CL=25pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC -2 - 2 ns CL=25pF
MTSR delay from SCLKO
shifting edge
t51 CC -5 - 5 ns CL=25pF
QSPI_TmgSM.vsd
SCLKI1)
t55
MTSR1)
t57
Data
valid
t56
SLSI
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0.
t54
t55
t59
Last latching
SCLK edge
First latching
SCLK edge
t57
Data
valid
t56
MRST1)
t60
First shift
SCLK edge
t60
t61
t58
0.5 VEXT/FLEX
0.5 VEXT/FLEX
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
Data Sheet 239 V 1.0 2017-01
SLSOn deviation from the ideal
programmed position
t510 CC -2 - 55 ns CL=25pF; MPsm
-9 - 12 ns CL=25pF; MPss
-7 - 12 ns MP+ss;
CL=25pF
-2 - 26 ns MP+sm;
CL=25pF
MRST setup to SCLK latching
edge 4)
t52 SR 20 - - ns CL=25pF; LVDSM 5V
output and LVDSH
3.3V input
MRST hold from SCLK latching
edge
t53 SR -6 - - ns CL=25pF; LVDSM 5V
output and LVDSH
3.3V input
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
Table 3-67 Master Mode MP+ss/MPRss output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
SCLKO clock period 1)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
t50 CC 40 - - ns CL=25pF
Deviation from the ideal duty
cycle 2) 3)
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -5 - 5 ns 0 < CL < 50pF
MTSR delay from SCLKO
shifting edge
t51 CC -12 - 12 ns CL=25pF
SLSOn deviation from the ideal
programmed position
t510 CC -12 - 12 ns CL=25pF
MRST setup to SCLK latching
edge 4)
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
t52 SR 50 4)5)
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
--nsCL=25pF
MRST hold from SCLK latching
edge
t53 SR -6 4)5) --nsCL=25pF
Table 3-66 Master Mode Timing, LVDSM output pads for data and clock (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
Data Sheet 240 V 1.0 2017-01
Table 3-68 Master Mode MP+sm/MPRsm output pads for data and clock
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
SCLKO clock period 1)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
t50 CC 100 - - ns CL=50pF
Deviation from the ideal duty
cycle 2) 3)
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -3 - 7 ns 0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC -17 - 17 ns CL=50pF
SLSOn deviation from the ideal
programmed position
t510 CC -17 - 17 ns MP+sm; CL=50pF
-22 - 2 ns MPss;
CL=50pF
0 - 70 ns MP+m; MPm; LPm;
CL=50pF
MRST setup to SCLK latching
edge 4)
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
t52 SR 85 4)5)
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
--nsCL=50pF
MRST hold from SCLK latching
edge
t53 SR -10 4)5) --nsCL=50pF
Table 3-69 Master Mode timing MPss output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
SCLKO clock period 1)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
t50 CC 40 - - ns CL=25pF
Deviation from the ideal duty
cycle 2) 3)
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -5 - 7+0.07 *
CL
ns CL=25pF
MTSR delay from SCLKO
shifting edge
t51 CC -10 - 10 ns CL=25pF
SLSOn deviation from the ideal
programmed position
t510 CC -10 - 10 ns CL=25pF
MRST setup to SCLK latching
edge 4)
t52 SR 50 4)5) --nsCL=25pF
MRST hold from SCLK latching
edge
t53 SR -6 4)5) --nsCL=25pF
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
Data Sheet 241 V 1.0 2017-01
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-70 Master Mode timing MPsm output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
SCLKO clock period 1)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
t50 CC 200 - - ns CL=50pF
Deviation from the ideal duty
cycle 2) 3)
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -5 - 9+0.06 *
CL
ns 0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC -19 - 19 ns CL=50pF
SLSOn deviation from the ideal
programmed position
t510 CC -19 - 17 ns CL=50pF
MRST setup to SCLK latching
edge 4)
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
t52 SR 100 4)5)
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
--nsCL=50pF
MRST hold from SCLK latching
edge
t53 SR -13 4)5) --nsCL=50pF
Table 3-71 Master Mode timing MPRm/MP+m/MPm/LPm output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
SCLKO clock period 1)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
t50 CC 400 - - ns CL=50pF
Deviation from the ideal duty
cycle 2) 3)
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -6-0.07 *
CL
-6+0.07 *
CL
ns 0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC -25 - 33 ns CL=50pF
SLSOn deviation from the ideal
programmed position
t510 CC -35 - 35 ns CL=50pF
MRST setup to SCLK latching
edge 4)
t52 SR 120 4)5) --nsCL=50pF
MRST hold from SCLK latching
edge
t53 SR -13 4)5) --nsCL=50pF
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
Data Sheet 242 V 1.0 2017-01
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-72 Master Mode Weak output pads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
SCLKO clock period 1)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
t50 CC 2000 - - ns CL=50pF
Deviation from the ideal duty
cycle 2) 3)
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t500 CC -110 - 110 ns 0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC -170 - 170 ns CL=50pF
SLSOn deviation from the ideal
programmed position
t510 CC -170 - 170 ns CL=50pF
MRST setup to SCLK latching
edge 4)
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
t52 SR 510 4)5)
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
--nsCL=50pF
MRST hold from SCLK latching
edge
t53 SR -40 4)5) --nsCL=50pF
Table 3-73 Slave mode timing
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
SCLK clock period t54 SR 4 x TMAX --ns
SCLK duty cycle t55/t54 SR 40 - 60 %
MTSR setup to SCLK latching
edge
t56 SR 7 1) - - ns Hystheresis inactive
9 1) - - ns Input Level AL
7 1) - - ns Input Level TTL
MTSR hold from SCLK latching
edge
t57 SR 5 1) - - ns Hystheresis inactive
11 1) - - ns Input Level AL
16 1) - - ns Input Level TTL
SLSI setup to first SCLK shift
edge
t58 SR 7 1) - - ns Hystheresis inactive
7 1) - - ns Input Level AL
14 1) - - ns Input Level TTL
11 - - ns Only for pin P15.1, AL
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
Data Sheet 243 V 1.0 2017-01
Figure 3-19 Master Mode Timing
SLSI hold from last SCLK
latching edge
t59 SR 5 1) - - ns Hystheresis inactive
7 1) - - ns Input Level AL
14 1) - - ns Input Level TTL
MRST delay from SCLK shift
edge
t60 CC 13 - 120 ns MP+m/MPRm;
CL=50pF
13 - 85 ns MP+sm/MPRsm;
CL=50pF
6 - 50 ns MP+ss/MPRss;
CL=25pF
70 - 500 ns MP+w/MPRw;
CL=50pF
13 - 120 ns MPm/LPm;
CL=50pF
13 - 100 ns MPsm;
CL=50pF
6 - 52 ns MPss;
CL=25pF
70 - 500 ns MPw/LPw;
CL=50pF
SLSI to valid data on MRST t61 SR--9 ns
1) Except pin P15.1
Table 3-73 Slave mode timing (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
QSPI_TmgMM.vsd
SCLK1)2)
MTSR1)
t51
MRST1)
t53
Data valid
SLSOn2)
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0, ECON.B=0 (no sampling point delay).
2) t510 is the deviation from the ideal position configured with the leading delay, BACON.LPRE and BACON.LEAD > 0.
t50
t500
t52
Data valid
SAMPLING POINT
t510
0.5 VEXT/FLEX
0.5 VEXT/FLEX
0.5 VEXT/FLEX
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
Data Sheet 244 V 1.0 2017-01
Figure 3-20 Slave Mode Timing
QSPI_TmgSM.vsd
SCLKI1)
t55
MTSR1)
t57
Data
valid
t56
SLSI
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0.
t54
t55
t59
Last latching
SCLK edge
First latching
SCLK edge
t57
Data
valid
t56
MRST1)
t60
First shift
SCLK edge
t60
t61
t58
0.5 VEXT/FLEX
0.5 VEXT/FLEX
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationMSC Timing 5 V Operation
Data Sheet 245 V 1.0 2017-01
3.27 MSC Timing 5 V Operation
The following section defines the timings for 5V pad power supply.
Note:Pad asymmetry is already included in the following timings.
Note:Load for LVDS pads are defined as differential loads in the following timings.
Table 3-74 LVDS clock/data (LVDS pads in LVDS mode)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
FCLPx clock period 1)
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
t40 CC 2 * TA 2) 3)
2) TA depends on the clock source selected for baud rate generation in the ABRA block of the MSC.
3) The capacitive load on the LVDS pins is differential, the capacitive load on the CMOS pins is single ended.
- - ns LVDSM; CL=50pF
Deviation from ideal duty cycle
4) 5)
t400 CC -1 - 1 ns LVDSM; 0 < CL < 50pF
SOPx output delay 6) t44 CC -3 - 4 ns LVDSM; CL=50pF;
option EN01
-4 - 4.5 ns LVDSM;
CL=50pF;
option EN01D
ENx output delay 6) t45 CC -4 - 5 ns MP+ss/MPRss; option
EN01; CL=25pF
-3 - 7 ns MP+ss/MPRss; option
EN01; CL=50pF
-3 - 11 ns MP+sm/MPRsm;
option EN01D;
CL=50pF
-2 - 9 ns MP+ss/MPRss; option
EN23; CL=25pF
-2 - 11 ns MP+ss/MPRss; option
EN23; CL=50pF
-3 - 11 ns MPss; option EN01;
CL=50pF
-7 - 2 ns MP+ss/MPRss; option
EN01; CL=0pF
-5 - 3 ns MP+sm/MPRsm;
option EN01D; CL=0pF
-4 - 5 ns MP+ss/MPRss; option
EN23; CL=0pF
-7 - 4 ns MPss; option EN01;
CL=0pF
SDI bit time t46 CC 8 * tMSC - - ns Upstream Timing
SDI rise time 7) t48 SR - - 200 ns Upstream Timing
SDI fall time 7) t49 SR - - 200 ns Upstream Timing
@160"
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationMSC Timing 5 V Operation
Data Sheet 246 V 1.0 2017-01
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
6) From FCLP rising edge.
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in
the middle of the bit are not violated.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationMSC Timing 5 V Operation
Data Sheet 247 V 1.0 2017-01
Timing Options for t45
The wiring shown in the Figure 3-21 provides three useful timing options for t45. depending on the signals selected
with the alternate output lines (ALT1 to ALT7) in the ports:
EN01 - FCLN, SON, EN0, EN1 - t45 reference timing
EN01D - FCLND, SOND, EN0, EN1 - t45 window shifted to the left
EN23 - FCLN, SON, EN2, EN3 - t45 window shifted to the right
The timings corresponding to EN01, EN01D, and EN23 are defined in the LVDS. In order to use the EN23 timings,
the application should use the EN2 and EN3 outputs of the MSC module.
Figure 3-21 Timing Options for t45
Table 3-75 MPss clock/data (LVDS pads in CMOS mode, option EN01)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
FCLPx clock period 1) t40 CC 2 * TA 2) 3) --nsMPss; CL=50pF
Deviation from ideal duty cycle
4) 5)
t400 CC -2 - 6+0.035 *
CL
ns MPss; 0 < CL < 100pF
SOPx output delay 6) t44 CC -4 - 7 ns MPss; CL=50pF
MSC
PAD
EN0
ALT1
ALTx
ALTy
ALT7
PAD
EN1
ALT1
ALTx
ALTy
ALT7
PAD
ALT1
ALTx
ALTy
ALT7
PAD
ALT1
ALTx
ALTy
ALT7
FCLP
FCLN
SOP
SON
LVDSM
LVDSM
EN2
EN3
FCLN
FCLND
SON
SOND
CMOS
CMOS
_DoublePath_4a.vsd
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationMSC Timing 5 V Operation
Data Sheet 248 V 1.0 2017-01
ENx output delay 6) t45 CC -5 - 7 ns MP+ss/MPRss;
CL=50pF
-2 - 15 ns MP+sm/MPRsm;
CL=50pF
-4 - 10 ns MPss;
CL=50pF
0 - 30 ns MPsm;
CL=50pF;
except pin P13.0
0 - 31 ns MPsm;
CL=50pF; pin
P13.0
6 - 45 ns MPm/MP+m/MPRm;
CL=50pF
-11 - 2 ns MP+ss/MPRss;
CL=0pF
-4 - 7 ns MP+sm/MPRsm;
CL=0pF
-10 - 2 ns MPss;
CL=0pF
-1 - 16 ns MPsm;
CL=0pF
-2 - 18 ns MP+m/MPm/MPRm;
CL=0pF
SDI bit time t46 CC 8 * tMSC - - ns Upstream Timing
SDI rise time 7) t48 SR - - 200 ns Upstream Timing
SDI fall time 7) t49 SR - - 200 ns Upstream Timing
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) TA depends on the clock source selected for baud rate generation in the ABRA block of the MSC.
3) FCLP signal high and low can be minimum 1 * TMSC.
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
6) From FCLP rising edge.
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in
the middle of the bit are not violated.
Table 3-76 MP+sm/MPRsm clock/data
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
FCLPx clock period 1) t40 CC 2 * TA - - ns MP+sm/MPRsm;
CL=50pF
Deviation from ideal duty cycle
2) 3)
t400 CC -2 - 3+0.01 *
CL
ns MP+sm/MPRsm; 0 <
CL < 200pF
SOPx output delay 4) t44 CC -5 - 7 ns MP+sm; CL=50pF
Table 3-75 MPss clock/data (LVDS pads in CMOS mode, option EN01) (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationMSC Timing 5 V Operation
Data Sheet 249 V 1.0 2017-01
ENx output delay 4) t45 CC -13 - 2 5) ns MPss; CL=50pF
-5 - 11 ns MP+sm/MPRsm;
CL=50pF
1 - 24 ns MPsm;
CL=50pF
4 - 37 ns MP+m/MPm/MPRm;
CL=50pF
-19 - -1 ns MPss;
CL=0pF
-13 - 2 ns MP+sm;
CL=0pF
-5 - 8 ns MPsm;
CL=0pF
-5 - 10 ns MPm/MP+m/MPRm;
CL=0pF
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) From FCLP rising edge.
5) If EN1 is configured to P13.0 the max limt is increased by 0.5ns to 2.5ns.
Table 3-77 MPm/MP+m/MPRm clock/data
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
FCLPx clock period 1)
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
t40 CC 2 * TA - - ns MPm/MP+m/MPRm;
CL=50pF
Deviation from ideal duty cycle
2) 3)
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t400 CC -8 - 15+0.04 *
CL
ns MPm/MP+m; 0 < CL <
200pF
SOPx output delay 4)
4) From FCLP rising edge.
t44 CC -11 - 9 ns MPm/MP+m; CL=50pF
ENx output delay 4) t45 CC -15 - 11 ns MPm/MP+m/MPRm;
CL=50pF
-33 - -4 ns MPm/MP+m/MPRm;
CL=0pF
Table 3-76 MP+sm/MPRsm clock/data (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationMSC Timing 3.3 V Operation
Data Sheet 250 V 1.0 2017-01
Figure 3-22 MSC Interface Timing
Note:The SOP data signal is sampled with the falling edge of FCLP in the target device.
3.28 MSC Timing 3.3 V Operation
The following section defines the timings for 3.3V pad power supply.
Note:Pad asymmetry is already included in the following timings.
Note:Load for LVDS pads are defined as differential loads in the following timings.
Mapping A, Combo Pads in LVDS Mode or CMOS Mode
The timing applies for the LVDS pads in LVDS operating mode:
The LVDSM output pads for clock and data signals set in LVDS mode
The CMOS MP pads for enable signals, with strong driver sharp edge (MPss) or strong driver medium edge
(MPsm).
Table 3-78 LVDS clock/data (LVDS pads in LVDS mode)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
FCLPx clock period 1) t40 CC 2 * TA 2) 3) - - ns LVDSM; CL=50pF
Deviation from ideal duty cycle
4) 5)
t400 CC -2 - 2 ns LVDSM; 0 < CL < 50pF
SOPx output delay 6) t44 CC -5 - 5 ns LVDSM; CL=50pF;
option EN01
-7 - 7 ns LVDSM;
CL=50pF;
option EN01D
MSC_Timing_A.vsd
t44 t44
t40
SOP
FCLP
SDI
t46
t48
0.1 VEXT/FLEX
0.9 VEXT/FLEX
t49
t46
t45 t45
EN
t400
0.5 VEXT/FLEX
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationMSC Timing 3.3 V Operation
Data Sheet 251 V 1.0 2017-01
ENx output delay 6) t45 CC -7 - 10 ns MP+ss/MPRss; option
EN01; CL=25pF
-5 - 13 ns MP+ss/MPRss; option
EN01; CL=50pF
-5 - 26 ns MP+sm/MPRsm;
option EN01D;
CL=50pF
-4 - 16 ns MP+ss/MPRss; option
EN23; CL=25pF
-4 - 17 ns MP+ss/MPRss; option
EN23; CL=50pF
-5 - 19 ns MPss; option EN01;
CL=50pF
-12 - 4 ns MP+ss/MPRss; option
EN01; CL=0pF
-9 - 11 ns MP+sm/MPRsm;
option EN01D; CL=0pF
-7 - 9 ns MP+ss/MPRss; option
EN23; CL=0pF
-12 - 7 ns MPss; option EN01;
CL=0pF
SDI bit time t46 CC 8 * tMSC - - ns Upstream Timing
SDI rise time 7) t48 SR - - 200 ns Upstream Timing
SDI fall time 7) t49 SR - - 200 ns Upstream Timing
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) TAmin = TMAX. When TMAX = 100 MHz,t40 = 20 ns
3) The capacitive load on the LVDS pins is differential, the capacitive load on the CMOS pins is single ended.
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
6) From FCLP rising edge.
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in
the middle of the bit are not violated.
Table 3-79 MPss clock/data (LVDS pads in CMOS mode, option EN01)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
FCLPx clock period 1) t40 CC 2 * TA 2) 3) --nsMPss; CL=50pF
Deviation from ideal duty cycle
4) 5)
t400 CC -5 - 7+0.07 *
CL
ns MPss; 0 < CL < 100pF
Table 3-78 LVDS clock/data (LVDS pads in LVDS mode) (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationMSC Timing 3.3 V Operation
Data Sheet 252 V 1.0 2017-01
Mapping B, CMOS MP Pads
This timing applies for the dedicated CMOS pads, pin Mapping B:
MP strong sharp (MPss) output pads for the clock and the data signals
MP strong sharp or strong medium (MPss or MPsm) output pads for enable signals
SOPx output delay 6) t44 CC -7 - 12 ns MPss; CL=50pF
ENx output delay 6) t45 CC -9 - 12 ns MP+ss/MPRss;
CL=50pF
-4 - 26 ns MP+sm/MPRsm;
CL=50pF
-7 - 17 ns MPss;
CL=50pF
0 - 54 ns MPsm;
CL=50pF;
except pin P13.0
0 - 58 ns MPsm;
CL=50pF; pin
P13.0
4 - 77 ns MPm/MP+m/MPRm;
CL=50pF
-19 - 4 ns MP+ss/MPRss;
CL=0pF
-7 - 12 ns MP+sm/MPRsm;
CL=0pF
-17 - 4 ns MPss;
CL=0pF
-2 - 28 ns MPsm;
CL=0pF
-4 - 31 ns MP+m/MPm/MPRm;
CL=0pF
SDI bit time t46 CC 8 * tMSC - - ns Upstream Timing
SDI rise time 7) t48 SR - - 200 ns Upstream Timing
SDI fall time 7) t49 SR - - 200 ns Upstream Timing
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) TAmin = TMAX. When TMAX = 100 MHz,t40 = 20 ns
3) FCLP signal high and low can be minimum 1 * TMSC.
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
6) From FCLP rising edge.
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in
the middle of the bit are not violated.
Table 3-79 MPss clock/data (LVDS pads in CMOS mode, option EN01) (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationMSC Timing 3.3 V Operation
Data Sheet 253 V 1.0 2017-01
Table 3-80 MP+sm/MPRsm clock/data
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
FCLPx clock period 1)
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
t40 CC 2 * TA - - ns MP+sm/MPRsm;
CL=50pF
Deviation from ideal duty cycle
2) 3)
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t400 CC -3 - 7 ns MP+sm/MPRsm; 0 <
CL < 200pF
SOPx output delay 4)
4) From FCLP rising edge.
t44 CC -9 - 12 ns MP+sm; CL=50pF
ENx output delay 4) t45 CC -20 - 4 ns MPss; CL=50pF
-9 - 19 ns MP+sm/MPRsm;
CL=50pF
0 - 44 ns MPsm;
CL=50pF
0 - 63 ns MP+m/MPm/MPRm;
CL=50pF
-33 - 0 ns MPss;
CL=0pF
-23 - 4 ns MP+sm/MPRsm;
CL=0pF
-9 - 14 ns MPsm;
CL=0pF
-9 - 17 ns MPm/MP+m/MPRm;
CL=0pF
Table 3-81 MPm/MP+m/MPRm clock/data
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
FCLPx clock period 1)
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
t40 CC 2 * TA - - ns MPm/MP+m/MPRm;
CL=50pF
Deviation from ideal duty cycle
2) 3)
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t400 CC -6-0.07 *
CL
-6+0.07 *
CL
ns MPm/MP+m/MPRm; 0
< CL < 200pF
SOPx output delay 4) t44 CC -19 - 17 ns MPm/MP+m; CL=50pF
ENx output delay 4) t45 CC -19 - 20 ns MPm/MP+m/MPRm;
CL=50pF
-57 - 0 ns MPm/MP+m/MPRm;
CL=0pF
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationMSC Timing 3.3 V Operation
Data Sheet 254 V 1.0 2017-01
Figure 3-23 MSC Interface Timing
Note:The SOP data signal is sampled with the falling edge of FCLP in the target device.
4) From FCLP rising edge.
MSC_Timing_A.vsd
t44 t44
t40
SOP
FCLP
SDI
t46
t48
0.1 VEXT/FLEX
0.9 VEXT/FLEX
t49
t46
t45 t45
EN
t400
0.5 VEXT/FLEX
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationEthernet Interface (ETH) Characteristics
Data Sheet 255 V 1.0 2017-01
3.29 Ethernet Interface (ETH) Characteristics
3.29.1 ETH Measurement Reference Points
Figure 3-24 ETH Measurement Reference Points
ETH_Testpoints.vsd
ETH Clock 1.4
V
1.4
V
2.0
V
0.8
V
2.0
V
0.8
V
t
R
t
F
ETH I/O
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationEthernet Interface (ETH) Characteristics
Data Sheet 256 V 1.0 2017-01
3.29.2 ETH Management Signal Parameters (ETH_MDC, ETH_MDIO)
Figure 3-25 ETH Management Signal Timing
Table 3-82 ETH Management Signal Parameters
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
ETH_MDC period t1 CC 400 - - ns CL=25pF
ETH_MDC high time t2 CC 160 - - ns CL=25pF
ETH_MDC low time t3 CC 160 - - ns CL=25pF
ETH_MDIO setup time (output) t4 CC 10 - - ns CL=25pF
ETH_MDIO hold time (output) t5 CC 10 - - ns CL=25pF
ETH_MDIO data valid (input) t6 SR 0 - 300 ns CL=25pF
ETH_Timing-Mgmt.vsd
ETH_MDC
ETH_MDIO
(output )
t
5
Valid Data
t
4
Valid Data
t
6
ETH_MDIO
(input )
ETH_MDC
ETH_MDIO
sourced by controller :
ETH_MDIO sourced by PHY :
ETH_MDC
t
1
t
3
t
2
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationEthernet Interface (ETH) Characteristics
Data Sheet 257 V 1.0 2017-01
3.29.3 ETH MII Parameters
In the following, the parameters of the MII (Media Independent Interface) are described.
Figure 3-26 ETH MII Signal Timing
Table 3-83 ETH MII Signal Timing Parameters
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Clock period t7 SR 40 - - ns CL=25pF;
baudrate=100Mbps
400 - - ns CL=25pF;
baudrate=10Mbps
Clock high time t8 SR 14 - 26 ns CL=25pF;
baudrate=100Mbps
140 1)
1) Defined by 35% of clock period.
-260
2)
2) Defined by 65% of clock period.
ns CL=25pF;
baudrate=10Mbps
Clock low time t9 SR 14 - 26 ns CL=25pF;
baudrate=100Mbps
140 1) -260
2) ns CL=25pF;
baudrate=10Mbps
Input setup time t10 SR 10 - - ns CL=25pF
Input hold time t11 SR 10 - - ns CL=25pF
Output valid time t12 CC 0 - 25 ns CL=25pF
ETH_Timing-MII.vsd
ETH_MII_RX_CLK
ETH_MII_TXD[3:0]
ETH_MII_TXEN
ETH_MII_RXD[3:0]
ETH_MII_RX_DV
ETH_MII_RX_ER
ETH_MII_TX_CLK
t
11
Valid Data
t
10
Valid Data
t
12
(sourced by controller )
(sourced by PHY )
t
7
t
9
t
8
ETH_MII_RX_CLK
ETH_MII_TX_CLK
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationEthernet Interface (ETH) Characteristics
Data Sheet 258 V 1.0 2017-01
3.29.4 ETH RMII Parameters
In the following, the parameters of the RMII (Reduced Media Independent Interface) are described.
Figure 3-27 ETH RMII Signal Timing
Table 3-84 ETH RMII Signal Timing Parameters
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
ETH_RMII_REF_CL clock
period
t13 CC 20 - - ns CL=25pF; 50ppm
ETH_RMII_REF_CL clock high
time
t14 CC 7 1)
1) Defined by 35% of clock period.
-13
2)
2) Defined by 65% of clock period.
ns CL=25pF
ETH_RMII_REF_CL clock low
time
t15 CC 7 1) -13
2) ns CL=25pF
ETHTXEN, ETHTXD[1:0],
ETHRXD[1:0], ETHCRSDV,
ETHRXER; setup time
t16 CC 4 - - ns CL=25pF
ETHTXEN, ETHTXD[1:0],
ETHRXD[1:0], ETHCRSDV,
ETHRXER; hold time
t17 CC 2 - - ns CL=25pF
ETH_Timing-RMII .vsd
ETH_RMII_REF_CL
t
17
Valid Data
t
16
t
13
t
15
t
14
ETH_RMII_REF_CL
ETHTXEN,
ETHTXD[1:0],
ETHRXD[1:0],
ETHCRSDV,
ETHRXER
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationE-Ray Parameters
Data Sheet 259 V 1.0 2017-01
3.30 E-Ray Parameters
The timings of this section are valid for the strong driver and either sharp edge settings of the output drivers with
CL = 25 pF. For the inputs the hysteresis has to be configured to inactive.
Table 3-85 Transmit Parameters
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Rise time of TxEN tdCCTxENRise2
5 CC
--9 ns
CL=25pF
Fall time of TxEN tdCCTxENFall25
CC
--9 nsCL=25pF
Sum of rise and fall time tdCCTxRise25+
dCCTxFall25
CC
- - 9 ns 20% - 80%;
CL=25pF
Sum of delay between TP1_FF
and TP1_CC and delays
derived from TP1_FFi, rising
edge of TxEN
tdCCTxEN01
CC
--25 ns
Sum of delay between TP1_FF
and TP1_CC and delays
derived from TP1_FFi, falling
edge of TxEN
tdCCTxEN10
CC
--25 ns
Asymmetry of sending ttx_asym CC -2.45 - 2.45 ns CL=25pF
Sum of delay between TP1_FF
and TP1_CC and delays
derived from TP1_FFi, rising
edge of TxD
tdCCTxD01
CC
--25 ns
Sum of delay between TP1_FF
and TP1_CC and delays
derived from TP1_FFi, falling
edge of TxD
tdCCTxD10
CC
--25 ns
TxD signal sum of rise and fall
time at TP1_BD
ttxd_sum CC--9 ns
Table 3-86 Receive Parameters
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Acceptance of asymmetry at
receiving part
tdCCTxAsymAcc
ept25 SR
-30.5 - 43.0 ns CL=25pF
Acceptance of asymmetry at
receiving part
tdCCTxAsymAcc
ept15 SR
-31.5 - 44.0 ns CL=15pF
Threshold for detecting logical
high
TuCCLogic1
SR
35 - 70 %
Threshold for detecting logical
low
TuCCLogic0
SR
30 - 65 %
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationE-Ray Parameters
Data Sheet 260 V 1.0 2017-01
Sum of delay between TP4_CC
and TP4_FF and delays
derived from TP4_FFi, rising
edge of RxD
tdCCRxD01
CC
--10 ns
Sum of delay between TP1_CC
and TP1_CC and delays
derived from TP4_FFi, falling
edge of RxD
tdCCRxD10
CC
--10 ns
Table 3-86 Receive Parameters (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationHSCT Parameters
Data Sheet 261 V 1.0 2017-01
3.31 HSCT Parameters
Table 3-87 HSCT - Rx/Tx setup timing
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
RX o/p duty cycle DCrx CC 40 - 60 %
Bias startup time tbias CC - 5 10 µs Bias distributor waking
up from power down
and provide stable
Bias.
RX startup time trxi CC - 5 - µs Wake-up RX from
power down.
TX startup time ttx CC - 5 - µs Wake-up TX from
power down.
Table 3-88 HSCT - Rx parasitics and loads
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Capacitance total budget Ctotal CC - 3.5 5 pF Total Budget for
complete receiver
including silicon,
package, pins and
bond wire
Parasitic inductance budget Htotal CC - 5 - nH
Table 3-89 LVDSH - Reduced TX and RX (RED)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Output differential voltage VOD CC 150 200 285 mV Rt = 100 Ohm ±20%
@2pF
Output voltage high VOH CC - - 1463 mV Rt = 100 Ohm ±20%
Output voltage low VOL CC 937 - - mV Rt = 100 Ohm ±20%
Output offset (Common mode)
voltage
VOS CC 1.08 1.2 1.32 V Rt = 100 Ohm ±20%
@2pF
Input voltage range VI SR - - 1.6 V Absolute max = 1.6 V +
(285mV/2) = 1.743
0.15 - - V Absolute min = 0.15 V -
(285 mV /2) = 0 V
Input differential threshold Vidth SR -100 - 100 mV 100 mV for 55% of bit
period; Note Absolute
Value (Vidth - Vidthl)
Data frequency DR CC 5 - 320 Mbps
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationHSCT Parameters
Data Sheet 262 V 1.0 2017-01
Receiver differential input
impedance
Rin CC 90 100 110 Ohm 0 V < VI < 1.6V
80 100 120 Ohm 1.6 V < VI < 2.0V
Slew rate SRtx CC--2 V/ns
Change in VOS between 0 and
1
dVOS CC - - 50 mV Peak to peak
(including DC
transients).
Change in Vod between 0 and
1
dVod CC - - 50 mV Peak to peak
(including DC
transients)
Fall time 1) tfall CC 0.26 - 1.2 ns Rt = 100 Ohm ±20%
@2pF
Rise time 1) trise CC 0.26 - 1.2 ns Rt = 100 Ohm ±20%
@2pF
1) Rise / fall times are defined for 10% - 90% of VOD
Table 3-90 HSCT PLL
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
PLL frequency range fPLL CC 12.5 320 320 MHz
PLL input frequency fREF CC 10 - 20 MHz
PLL lock-in time tLOCK CC--50 µs
Bit Error Rate based on 10 MHz
reference clock at Slave PLL
side
BER10 CC - - 10EXP-9 - Bit Error Rate based
on Slave interface
reference clock at 10
MHz
Bit Error Rate based on 20 MHz
reference clock at Slave PLL
side
BER20 CC--10EXP-
12
- Bit Error Rate based
on Slave interface
reference clock at 20
MHz
Absolute RMS Jitter (TX out) JABS10 CC -125 - 125 ps Measured at link TX
out; valid for
Reference frequency
at 10 MHz
Absolute RMS Jitter (TX out) JABS20 CC -85 - 85 ps Measured at link TX
out; valid for
Reference frequency
at 20 MHz
Table 3-89 LVDSH - Reduced TX and RX (RED) (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationHSCT Parameters
Data Sheet 263 V 1.0 2017-01
Accumulated RMS Jitter (RX
side)
JACC10 CC - - 145 ps Measured at link RX
input, based on 5000
measures, each 300
clock cycles; valid for
Reference frequency
at 10 MHz
Accumulated RMS Jitter (link
RX side)
JACC20 CC - - 115 ps Measured at link RX
input, based on 5000
measures, each 300
clock cycles; valid for
Reference frequency
at 20 MHz
Total Jitter peak to peak TJpp CC - - 2083 ps Total Jitter as sum of
deterministic jitter and
random jitter
Table 3-91 HSCT Sysclk
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Frequency fSYSCLK CC 10 - 20 MHz
Frequency error dfERR CC -1 - 1 %
Duty Cycle DCsys CC 45 - 55 %
Load impedance RLOAD CC 10 - - kOhm
Load capacitance CLOAD CC--10 pF
Integrated phase noise IPN CC - - -58 dB single sideband phase
noise in 10 kHz to 10
Mhz at 20 MHz SysClk
Table 3-90 HSCT PLL (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationInter-IC (I2C) Interface Timing
Data Sheet 264 V 1.0 2017-01
3.32 Inter-IC (I2C) Interface Timing
This section defines the timings for I2C in the TC270 / TC275 / TC277.
All I2C timing parameter are SR for Master Mode and CC for Slave Mode.
Table 3-92 I2C Standard Mode Timing
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Fall time of both SDA and SCL t1 - - 300 ns Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
Capacitive load for each bus
line
Cb SR--400 pF
Bus free time between a STOP
and ATART condition
t10 4.7 - - µs Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
Rise time of both SDA and SCL t2 - - 1000 ns Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
Data hold time t3 0 - - µs Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
Data set-up time t4 250 - - ns Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
Low period of SCL clock t5 4.7 - - µs Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
High period of SCL clock t6 4 - - µs Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
Hold time for the (repeated)
START condition
t7 4 - - µs Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationInter-IC (I2C) Interface Timing
Data Sheet 265 V 1.0 2017-01
Set-up time for (repeated)
START condition
t8 4.7 - - µs Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
Set-up time for STOP condition t9 4 - - µs Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
Table 3-93 I2C Fast Mode Timing
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Fall time of both SDA and SCL t1 20+0.1*C
b
- 300 ns Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
Capacitive load for each bus
line
Cb SR--400 pF
Bus free time between a STOP
and ATART condition
t10 1.3 - - µs Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
Rise time of both SDA and SCL t2 20+0.1*C
b
- 300 ns Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
Data hold time t3 0 - - µs Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
Data set-up time t4 100 - - ns Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
Low period of SCL clock t5 1.3 - - µs Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
High period of SCL clock t6 0.6 - - µs Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
Table 3-92 I2C Standard Mode Timing (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationInter-IC (I2C) Interface Timing
Data Sheet 266 V 1.0 2017-01
Hold time for the (repeated)
START condition
t7 0.6 - - µs Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
Set-up time for (repeated)
START condition
t8 0.6 - - µs Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
Set-up time for STOP condition t9 0.6 - - µs Measured with a pull-
up resistor of 4.7
kohms at each of the
SCL and SDA line
Table 3-93 I2C Fast Mode Timing (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationFlash Target Parameters
Data Sheet 267 V 1.0 2017-01
3.33 Flash Target Parameters
Program Flash program and erase operation is only allowed up the TJ= 150°C.
Table 3-94 FLASH
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Program Flash Erase Time per
logical sector
tERP CC - - 1 s cycle count < 1000
- 0.207 +
0.003 * (S
[KByte]) /
(fFSI
[MHz])1)
- s cycle count < 1000, for
sector of size S
Program Flash Erase Time per
Multi-Sector Command
tMERP CC - - 1 s For consecutive logical
sectors in a physical
sector, cycle count <
1000
- 0.207 +
0.003 * (S
[KByte]) /
(fFSI
[MHz])1)
- s For consecutive logical
sector range of size S
in a physical sector,
cycle count < 1000
Program Flash program time
per page in 5 V mode
tPRP5 CC--50 +
3000/(fFSI
[MHz])
µs 32 Byte
Program Flash program time
per page in 3.3 V mode
tPRP3 CC--81 +
3400/(fFSI
[MHz])
µs 32 Byte
Program Flash program time
per burst in 5 V mode
tPRPB5 CC--125 +
9500/(fFSI
[MHz])
µs 256 Byte
Program Flash program time
per burst in 3.3 V mode
tPRPB3 CC--410 +
12000/(fF
SI [MHz])
µs 256 Byte
Program Flash program time
for 1 MByte with burst
programming in 3 V mode
excluding communication
tPRPB3_1MB
CC
- - 2.2 s Derived value for
documentation
purpose, valid for fFSI =
100MHz
Program Flash program time
for 1 MByte with burst
programming in 5 V mode
excluding communication
tPRPB5_1MB
CC
- - 0.9 s Derived value for
documentation
purpose, valid for fFSI =
100MHz
Program Flash program time
for complete PFlash with burst
programming in 5 V mode
excluding communication
tPRPB5_PF
CC
- - 3.6 s Derived value for
documentation
purpose, valid for fFSI =
100MHz
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationFlash Target Parameters
Data Sheet 268 V 1.0 2017-01
Write Page Once adder tADD CC--15 +
500/(fFSI
[MHz])
µs Adder to Program
Time when using Write
Page Once
Program Flash suspend to read
latency
tSPNDP CC - - 12000/(fF
SI [MHz])
µs For Write Burst, Verify
Erased and for multi-
(logical) sector erase
commands
Data Flash Erase Time per
Sector 2)
tERD CC - 0.12 +
0.08/(fFSI
[MHz])1)
- s cycle count < 1000
-0.57 +
0.15/(fFSI
[MHz])1)
0.928 +
0.15/(fFSI
[MHz])
s cycle count < 125000
Data Flash Erase Time per
Multi-Sector Command 2)
tMERD CC - 0.12 +
0.01 * (S
[KByte]) /
(fFSI
[MHz])1)
- s For consecutive logical
sector range of size S,
cycle count < 1000
-0.57 +
0.019 * (S
[KByte]) /
(fFSI
[MHz])1)
0.928 +
0.019 * (S
[KByte]) /
(fFSI
[MHz])
s For consecutive logical
sector range of size S,
cycle count < 125000
Data Flash erase disturb limit NDFD CC--50 cycles
Program time data flash per
page 3)
tPRD CC--50 +
2500/(fFSI
[MHz]) 3)
µs 8 Byte
Complete Device Flash Erase
Time PFlash and DFlash 4)
tER_Dev CC - - 9 s Derived value for
documentation
purpose (excl. UCBs
and HSMs), valid for
fFSI = 100MHz
Data Flash program time per
burst 3)
tPRDB CC--96 +
4400/(fFSI
[MHz]) 3)
µs 32 Bytes
Data Flash suspend to read
latency
tSPNDD CC - - 12000/(fF
SI [MHz])
µs
Wait time after margin change tFL_MarginDel
CC
--10 µs
Program Flash Retention Time,
Sector
tRET CC 20 - - years Max. 1000
erase/program cycles
Data Flash Endurance per
EEPROMx sector 5)
NE_EEP10
CC
125000 - - cycles Max. data retention
time 10 years
Table 3-94 FLASH (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationFlash Target Parameters
Data Sheet 269 V 1.0 2017-01
Data Flash Endurance per
HSMx sector 5)
NE_HSM CC 125000 - - cycles Max. data retention
time 10 years
UCB Retention Time tRTU CC 20 - - years Max. 100
erase/program cycles
per UCB, max 400
erase/program cycles
in total
Data Flash access delay tDF CC - - 100 ns see
PMU_FCON.WSDFLA
SH
Data Flash ECC Delay tDFECC CC - - 20 ns see
PMU_FCON.WSECD
F
Program Flash access delay tPF CC - - 30 ns see
PMU_FCON.WSPFLA
SH
Program Flash ECC delay tPFECC CC - - 10 ns see
PMU_FCON.WSECP
F
Number of erase operations on
DF0 over lifetime
NERD0 CC - - 750000 cycles
Number of erase operations on
DF1 over lifetime
NERD1 CC - - 500000 cycles
Junction temperature limit for
PFlash program/erase
operations
TJPFlash SR--150 °C
1) All typical values were characterised, but are not tested. Typical values are safe median values at room temperature
2) Under out-of-spec conditions (e.g. over-cycling) or in case of activation of WL oriented defects, the duration of erase
processes may be increased by up to 50%.
3) Time is not dependent on program mode (5V or 3.3V).
4) Using 512 KByte erase commands.
5) Only valid when a robust EEPROM emulation algorithm is used. For more details see the Users Manual.
Table 3-94 FLASH (cont’d)
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
@160"
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationPackage Outline
Data Sheet 270 V 1.0 2017-01
3.34 Package Outline
Figure 3-28 Package Outlines PG-LQFP-176-22
Figure 3-29 Package Outlines LF-BGA-292-6
You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”:
http://www.infineon.com/products.
Table 3-95 Exposed Pad Dimensions
Ax (nominal EPad size) 7.9 mm ± 50 µm
Ay (nominal EPad size) 7.9 mm ± 50 µm
Ex (solder able EPad size) 8.7 mm ± 50 µm
Ey (solder able EPad size) 8.7 mm ± 50 µm
CODE
ST ANDO F F
ABCDEFGHJK
1
2
3
4
5
6
7
8
9
10
INDEX
MARKING
(LASERED )
INDEX MARKING
0.1 C
11
12
LM
13
14
PN
SEATIN G PLANE
0.8
18
15
17
16
20
19
RTUVWY
COPLANARITY
292 x
0.15
0.08
M
C
0.15
M
C A B
292 x
C
A
B
17
±0 .1
17
±0. 1
0. 33 MI N
1.7 MAX
0.5
±0 .0 5
19 x 0.8 = 15 .2
0.8
19 x 0 .8 = 1 5. 2
@160" m inmmnnnvwnfii W V , AA :2 0 9‘0 0 r—m rflnzflm IA 3) < h="" r=""><19 ea="" ea="" ea="" 69="" a="" u="" mum="" eb="" m;="-" mm="" 7="" ‘="" 2s:="" wnmz="" m="" mmmmxmm="" mmnmm="" «n="" iii/mn="" u="" l1="" mm="" ms»="" up="" mm="" n="" are="" gauge="" 5="" 1="" mm="" ‘="" ~="" 3="" momma="" 1w3www“mummy="" homwm="" fir="" 7‘="" wran="" pehsunre="" .="" o’="" r,="" w="" (="" v.m“/)hm="" refer="" *n="" \i(="" met="" 4="" o="" as="" (7%="" 3‘="" [verzv="" cot/pu="" a;="" mm="" mm="" m="" wmmm-w="" mm="" rn="" w="" h="" 5075»="" w="" 3="" r="" ,6="" m="" mm”="" mm="" v="" 7="" 5322';="" m="">
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationPackage Outline
Data Sheet 271 V 1.0 2017-01
3.34.1 Package Parameters
3.34.2 TC270 Carrier Tape
Figure 3-30 Carrier Tape Dimenions
Table 3-96 Thermal Characteristics of the Package
Device Package RQJCT1)
1) The top and bottom thermal resistances between the case and the ambient (RTCAT, RTCAB) are to be combined with the
thermal resistances between the junction and the case given above (RTJCT, RTJCB), in order to calculate the total thermal
resistance between the junction and the ambient (RTJA). The thermal resistances between the case and the ambient (RTCAT,
RTCAB) depend on the external system (PCB, case) characteristics, and are under user responsibility.
The junction temperature can be calculated using the following equation: TJ=TA+RTJA * PD, where the RTJA is the total
thermal resistance between the junction and the ambient. This total junction ambient resistance RTJA can be obtained from
the upper four partial thermal resistances.
Thermal resistances as measured by the ’cold plate method’ (MIL SPEC-883 Method 1012.1).
RQJCB1) RQJA Unit Note
TC275 PG-LQFP-176-22 9,6 1,25 14,72)
2) Value is defined in accordance with JEDEC JESD51-3, JESD51-5, and JESD51-7.
K/W with soldered
exposed pad
TC277 LF-BGA-292-6 5,1 7,2 15,83)
3) Value is defined in accordance with JEDEC JESD51-1.
K/W
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationPackage Outline
Data Sheet 272 V 1.0 2017-01
Table 3-97 TC270 Chip Dimenions
Device A B T
TC270 7,590 mm 6,930 mm 0,3 mm
@neon
TC270 / TC275 / TC277 DC-Step
Electrical SpecificationQuality Declarations
Data Sheet 273 V 1.0 2017-01
3.35 Quality Declarations
Table 3-98 Quality Parameters
Parameter Symbol Values Unit Note / Test Condition
Min. Typ. Max.
Operation Lifetime tOP - - 24500 hour
ESD susceptibility according to
Human Body Model (HBM)
VHBM - - 2000 V Conforming to
JESD22-A114-B
ESD susceptibility of the LVDS
pins
VHBM1 --500 V
ESD susceptibility according to
Charged Device Model (CDM)
VCDM - - 500 V for all other balls/pins;
conforming to
JESD22-C101-C
- - 750 V for corner balls/pins;
conforming to
JESD22-C101-C
Moisture Sensitivity Level MSL - - 3 Conforming to Jedec
J-STD--020C for 240C
@neon
TC270 / TC275 / TC277 DC-Step
HistoryChanges from TC27xDB_v10 to 1.0
Data Sheet 274 V 1.0 2017-01
4 History
4.1 Changes from TC27xDB_v10 to 1.0
Replace PG-LQFP-176-18 with correct package LF-BGA-292-6 in table 1
• VADC
Add parameter tWU
Add parameter RMDU
Add parameter RMDD
Published by Infineon Technologies AG
www.infineon.com

Products related to this Datasheet

IC MCU 32BIT 4MB FLASH 176LQFP
IC MCU 32BIT 4MB FLASH 176LQFP
IC MCU 32BIT 4MB FLASH 176LQFP